Metamath Proof Explorer


Theorem mpjaodan

Description: Eliminate a disjunction in a deduction. A translation of natural deduction rule \/ E ( \/ elimination), see natded . (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses jaodan.1
|- ( ( ph /\ ps ) -> ch )
jaodan.2
|- ( ( ph /\ th ) -> ch )
jaodan.3
|- ( ph -> ( ps \/ th ) )
Assertion mpjaodan
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 jaodan.1
 |-  ( ( ph /\ ps ) -> ch )
2 jaodan.2
 |-  ( ( ph /\ th ) -> ch )
3 jaodan.3
 |-  ( ph -> ( ps \/ th ) )
4 1 2 jaodan
 |-  ( ( ph /\ ( ps \/ th ) ) -> ch )
5 3 4 mpdan
 |-  ( ph -> ch )