Metamath Proof Explorer


Theorem mpl1

Description: The identity element of the ring of polynomials. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses mpl1.p
|- P = ( I mPoly R )
mpl1.d
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin }
mpl1.z
|- .0. = ( 0g ` R )
mpl1.o
|- .1. = ( 1r ` R )
mpl1.u
|- U = ( 1r ` P )
mpl1.i
|- ( ph -> I e. W )
mpl1.r
|- ( ph -> R e. Ring )
Assertion mpl1
|- ( ph -> U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) )

Proof

Step Hyp Ref Expression
1 mpl1.p
 |-  P = ( I mPoly R )
2 mpl1.d
 |-  D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin }
3 mpl1.z
 |-  .0. = ( 0g ` R )
4 mpl1.o
 |-  .1. = ( 1r ` R )
5 mpl1.u
 |-  U = ( 1r ` P )
6 mpl1.i
 |-  ( ph -> I e. W )
7 mpl1.r
 |-  ( ph -> R e. Ring )
8 eqid
 |-  ( I mPwSer R ) = ( I mPwSer R )
9 eqid
 |-  ( Base ` P ) = ( Base ` P )
10 8 1 9 6 7 mplsubrg
 |-  ( ph -> ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) )
11 1 8 9 mplval2
 |-  P = ( ( I mPwSer R ) |`s ( Base ` P ) )
12 eqid
 |-  ( 1r ` ( I mPwSer R ) ) = ( 1r ` ( I mPwSer R ) )
13 11 12 subrg1
 |-  ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) -> ( 1r ` ( I mPwSer R ) ) = ( 1r ` P ) )
14 10 13 syl
 |-  ( ph -> ( 1r ` ( I mPwSer R ) ) = ( 1r ` P ) )
15 8 6 7 2 3 4 12 psr1
 |-  ( ph -> ( 1r ` ( I mPwSer R ) ) = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) )
16 14 15 eqtr3d
 |-  ( ph -> ( 1r ` P ) = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) )
17 5 16 eqtrid
 |-  ( ph -> U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) )