Metamath Proof Explorer


Theorem mplascl1

Description: The one scalar as a polynomial. (Contributed by SN, 12-Mar-2025)

Ref Expression
Hypotheses mplascl1.w
|- W = ( I mPoly R )
mplascl1.a
|- A = ( algSc ` W )
mplascl1.o
|- O = ( 1r ` R )
mplascl1.1
|- .1. = ( 1r ` W )
mplascl1.i
|- ( ph -> I e. V )
mplascl1.r
|- ( ph -> R e. Ring )
Assertion mplascl1
|- ( ph -> ( A ` O ) = .1. )

Proof

Step Hyp Ref Expression
1 mplascl1.w
 |-  W = ( I mPoly R )
2 mplascl1.a
 |-  A = ( algSc ` W )
3 mplascl1.o
 |-  O = ( 1r ` R )
4 mplascl1.1
 |-  .1. = ( 1r ` W )
5 mplascl1.i
 |-  ( ph -> I e. V )
6 mplascl1.r
 |-  ( ph -> R e. Ring )
7 1 5 6 mplsca
 |-  ( ph -> R = ( Scalar ` W ) )
8 7 fveq2d
 |-  ( ph -> ( 1r ` R ) = ( 1r ` ( Scalar ` W ) ) )
9 3 8 eqtrid
 |-  ( ph -> O = ( 1r ` ( Scalar ` W ) ) )
10 9 fveq2d
 |-  ( ph -> ( A ` O ) = ( A ` ( 1r ` ( Scalar ` W ) ) ) )
11 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
12 1 5 6 mpllmodd
 |-  ( ph -> W e. LMod )
13 1 5 6 mplringd
 |-  ( ph -> W e. Ring )
14 2 11 12 13 ascl1
 |-  ( ph -> ( A ` ( 1r ` ( Scalar ` W ) ) ) = ( 1r ` W ) )
15 10 14 eqtrd
 |-  ( ph -> ( A ` O ) = ( 1r ` W ) )
16 15 4 eqtr4di
 |-  ( ph -> ( A ` O ) = .1. )