| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplgrp.p |  |-  P = ( I mPoly R ) | 
						
							| 2 |  | eqid |  |-  ( I mPwSer R ) = ( I mPwSer R ) | 
						
							| 3 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 4 |  | simpl |  |-  ( ( I e. V /\ R e. CRing ) -> I e. V ) | 
						
							| 5 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 6 | 5 | adantl |  |-  ( ( I e. V /\ R e. CRing ) -> R e. Ring ) | 
						
							| 7 | 2 1 3 4 6 | mplsubrg |  |-  ( ( I e. V /\ R e. CRing ) -> ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) ) | 
						
							| 8 | 2 1 3 4 6 | mpllss |  |-  ( ( I e. V /\ R e. CRing ) -> ( Base ` P ) e. ( LSubSp ` ( I mPwSer R ) ) ) | 
						
							| 9 |  | simpr |  |-  ( ( I e. V /\ R e. CRing ) -> R e. CRing ) | 
						
							| 10 | 2 4 9 | psrassa |  |-  ( ( I e. V /\ R e. CRing ) -> ( I mPwSer R ) e. AssAlg ) | 
						
							| 11 |  | eqid |  |-  ( 1r ` ( I mPwSer R ) ) = ( 1r ` ( I mPwSer R ) ) | 
						
							| 12 | 11 | subrg1cl |  |-  ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) -> ( 1r ` ( I mPwSer R ) ) e. ( Base ` P ) ) | 
						
							| 13 | 7 12 | syl |  |-  ( ( I e. V /\ R e. CRing ) -> ( 1r ` ( I mPwSer R ) ) e. ( Base ` P ) ) | 
						
							| 14 |  | eqid |  |-  ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) | 
						
							| 15 | 14 | subrgss |  |-  ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) -> ( Base ` P ) C_ ( Base ` ( I mPwSer R ) ) ) | 
						
							| 16 | 7 15 | syl |  |-  ( ( I e. V /\ R e. CRing ) -> ( Base ` P ) C_ ( Base ` ( I mPwSer R ) ) ) | 
						
							| 17 | 1 2 3 | mplval2 |  |-  P = ( ( I mPwSer R ) |`s ( Base ` P ) ) | 
						
							| 18 |  | eqid |  |-  ( LSubSp ` ( I mPwSer R ) ) = ( LSubSp ` ( I mPwSer R ) ) | 
						
							| 19 | 17 18 14 11 | issubassa |  |-  ( ( ( I mPwSer R ) e. AssAlg /\ ( 1r ` ( I mPwSer R ) ) e. ( Base ` P ) /\ ( Base ` P ) C_ ( Base ` ( I mPwSer R ) ) ) -> ( P e. AssAlg <-> ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) /\ ( Base ` P ) e. ( LSubSp ` ( I mPwSer R ) ) ) ) ) | 
						
							| 20 | 10 13 16 19 | syl3anc |  |-  ( ( I e. V /\ R e. CRing ) -> ( P e. AssAlg <-> ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) /\ ( Base ` P ) e. ( LSubSp ` ( I mPwSer R ) ) ) ) ) | 
						
							| 21 | 7 8 20 | mpbir2and |  |-  ( ( I e. V /\ R e. CRing ) -> P e. AssAlg ) |