| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplval.p |
|- P = ( I mPoly R ) |
| 2 |
|
mplval.s |
|- S = ( I mPwSer R ) |
| 3 |
|
mplval.b |
|- B = ( Base ` S ) |
| 4 |
|
mplval.z |
|- .0. = ( 0g ` R ) |
| 5 |
|
mplbas.u |
|- U = ( Base ` P ) |
| 6 |
|
ssrab2 |
|- { f e. B | f finSupp .0. } C_ B |
| 7 |
|
eqid |
|- { f e. B | f finSupp .0. } = { f e. B | f finSupp .0. } |
| 8 |
1 2 3 4 7
|
mplval |
|- P = ( S |`s { f e. B | f finSupp .0. } ) |
| 9 |
8 3
|
ressbas2 |
|- ( { f e. B | f finSupp .0. } C_ B -> { f e. B | f finSupp .0. } = ( Base ` P ) ) |
| 10 |
6 9
|
ax-mp |
|- { f e. B | f finSupp .0. } = ( Base ` P ) |
| 11 |
5 10
|
eqtr4i |
|- U = { f e. B | f finSupp .0. } |