Step |
Hyp |
Ref |
Expression |
1 |
|
psrplusgpropd.b1 |
|- ( ph -> B = ( Base ` R ) ) |
2 |
|
psrplusgpropd.b2 |
|- ( ph -> B = ( Base ` S ) ) |
3 |
|
psrplusgpropd.p |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` S ) y ) ) |
4 |
1 2
|
eqtr3d |
|- ( ph -> ( Base ` R ) = ( Base ` S ) ) |
5 |
4
|
psrbaspropd |
|- ( ph -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) ) |
6 |
5
|
adantr |
|- ( ( ph /\ I e. _V ) -> ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer S ) ) ) |
7 |
1 2 3
|
grpidpropd |
|- ( ph -> ( 0g ` R ) = ( 0g ` S ) ) |
8 |
7
|
breq2d |
|- ( ph -> ( a finSupp ( 0g ` R ) <-> a finSupp ( 0g ` S ) ) ) |
9 |
8
|
adantr |
|- ( ( ph /\ I e. _V ) -> ( a finSupp ( 0g ` R ) <-> a finSupp ( 0g ` S ) ) ) |
10 |
6 9
|
rabeqbidv |
|- ( ( ph /\ I e. _V ) -> { a e. ( Base ` ( I mPwSer R ) ) | a finSupp ( 0g ` R ) } = { a e. ( Base ` ( I mPwSer S ) ) | a finSupp ( 0g ` S ) } ) |
11 |
|
eqid |
|- ( I mPoly R ) = ( I mPoly R ) |
12 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
13 |
|
eqid |
|- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
14 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
15 |
|
eqid |
|- ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly R ) ) |
16 |
11 12 13 14 15
|
mplbas |
|- ( Base ` ( I mPoly R ) ) = { a e. ( Base ` ( I mPwSer R ) ) | a finSupp ( 0g ` R ) } |
17 |
|
eqid |
|- ( I mPoly S ) = ( I mPoly S ) |
18 |
|
eqid |
|- ( I mPwSer S ) = ( I mPwSer S ) |
19 |
|
eqid |
|- ( Base ` ( I mPwSer S ) ) = ( Base ` ( I mPwSer S ) ) |
20 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
21 |
|
eqid |
|- ( Base ` ( I mPoly S ) ) = ( Base ` ( I mPoly S ) ) |
22 |
17 18 19 20 21
|
mplbas |
|- ( Base ` ( I mPoly S ) ) = { a e. ( Base ` ( I mPwSer S ) ) | a finSupp ( 0g ` S ) } |
23 |
10 16 22
|
3eqtr4g |
|- ( ( ph /\ I e. _V ) -> ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly S ) ) ) |
24 |
|
reldmmpl |
|- Rel dom mPoly |
25 |
24
|
ovprc1 |
|- ( -. I e. _V -> ( I mPoly R ) = (/) ) |
26 |
24
|
ovprc1 |
|- ( -. I e. _V -> ( I mPoly S ) = (/) ) |
27 |
25 26
|
eqtr4d |
|- ( -. I e. _V -> ( I mPoly R ) = ( I mPoly S ) ) |
28 |
27
|
fveq2d |
|- ( -. I e. _V -> ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly S ) ) ) |
29 |
28
|
adantl |
|- ( ( ph /\ -. I e. _V ) -> ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly S ) ) ) |
30 |
23 29
|
pm2.61dan |
|- ( ph -> ( Base ` ( I mPoly R ) ) = ( Base ` ( I mPoly S ) ) ) |