Description: The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplval2.p | |- P = ( I mPoly R ) |
|
| mplval2.s | |- S = ( I mPwSer R ) |
||
| mplval2.u | |- U = ( Base ` P ) |
||
| mplbasss.b | |- B = ( Base ` S ) |
||
| Assertion | mplbasss | |- U C_ B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplval2.p | |- P = ( I mPoly R ) |
|
| 2 | mplval2.s | |- S = ( I mPwSer R ) |
|
| 3 | mplval2.u | |- U = ( Base ` P ) |
|
| 4 | mplbasss.b | |- B = ( Base ` S ) |
|
| 5 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 6 | 1 2 4 5 3 | mplbas | |- U = { f e. B | f finSupp ( 0g ` R ) } |
| 7 | 6 | ssrab3 | |- U C_ B |