Metamath Proof Explorer


Theorem mplbasss

Description: The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mplval2.p
|- P = ( I mPoly R )
mplval2.s
|- S = ( I mPwSer R )
mplval2.u
|- U = ( Base ` P )
mplbasss.b
|- B = ( Base ` S )
Assertion mplbasss
|- U C_ B

Proof

Step Hyp Ref Expression
1 mplval2.p
 |-  P = ( I mPoly R )
2 mplval2.s
 |-  S = ( I mPwSer R )
3 mplval2.u
 |-  U = ( Base ` P )
4 mplbasss.b
 |-  B = ( Base ` S )
5 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
6 1 2 4 5 3 mplbas
 |-  U = { f e. B | f finSupp ( 0g ` R ) }
7 6 ssrab3
 |-  U C_ B