| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplcoe1.p |  |-  P = ( I mPoly R ) | 
						
							| 2 |  | mplcoe1.d |  |-  D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 3 |  | mplcoe1.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | mplcoe1.o |  |-  .1. = ( 1r ` R ) | 
						
							| 5 |  | mplcoe1.i |  |-  ( ph -> I e. W ) | 
						
							| 6 |  | mplcoe2.g |  |-  G = ( mulGrp ` P ) | 
						
							| 7 |  | mplcoe2.m |  |-  .^ = ( .g ` G ) | 
						
							| 8 |  | mplcoe2.v |  |-  V = ( I mVar R ) | 
						
							| 9 |  | mplcoe2.r |  |-  ( ph -> R e. CRing ) | 
						
							| 10 |  | mplcoe2.y |  |-  ( ph -> Y e. D ) | 
						
							| 11 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 12 | 9 11 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 13 | 1 | mplcrng |  |-  ( ( I e. W /\ R e. CRing ) -> P e. CRing ) | 
						
							| 14 | 5 9 13 | syl2anc |  |-  ( ph -> P e. CRing ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ph /\ ( x e. I /\ y e. I ) ) -> P e. CRing ) | 
						
							| 16 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 17 | 5 | adantr |  |-  ( ( ph /\ ( x e. I /\ y e. I ) ) -> I e. W ) | 
						
							| 18 | 12 | adantr |  |-  ( ( ph /\ ( x e. I /\ y e. I ) ) -> R e. Ring ) | 
						
							| 19 |  | simprr |  |-  ( ( ph /\ ( x e. I /\ y e. I ) ) -> y e. I ) | 
						
							| 20 | 1 8 16 17 18 19 | mvrcl |  |-  ( ( ph /\ ( x e. I /\ y e. I ) ) -> ( V ` y ) e. ( Base ` P ) ) | 
						
							| 21 |  | simprl |  |-  ( ( ph /\ ( x e. I /\ y e. I ) ) -> x e. I ) | 
						
							| 22 | 1 8 16 17 18 21 | mvrcl |  |-  ( ( ph /\ ( x e. I /\ y e. I ) ) -> ( V ` x ) e. ( Base ` P ) ) | 
						
							| 23 |  | eqid |  |-  ( .r ` P ) = ( .r ` P ) | 
						
							| 24 | 6 23 | mgpplusg |  |-  ( .r ` P ) = ( +g ` G ) | 
						
							| 25 | 24 | eqcomi |  |-  ( +g ` G ) = ( .r ` P ) | 
						
							| 26 | 16 25 | crngcom |  |-  ( ( P e. CRing /\ ( V ` y ) e. ( Base ` P ) /\ ( V ` x ) e. ( Base ` P ) ) -> ( ( V ` y ) ( +g ` G ) ( V ` x ) ) = ( ( V ` x ) ( +g ` G ) ( V ` y ) ) ) | 
						
							| 27 | 15 20 22 26 | syl3anc |  |-  ( ( ph /\ ( x e. I /\ y e. I ) ) -> ( ( V ` y ) ( +g ` G ) ( V ` x ) ) = ( ( V ` x ) ( +g ` G ) ( V ` y ) ) ) | 
						
							| 28 | 27 | ralrimivva |  |-  ( ph -> A. x e. I A. y e. I ( ( V ` y ) ( +g ` G ) ( V ` x ) ) = ( ( V ` x ) ( +g ` G ) ( V ` y ) ) ) | 
						
							| 29 | 1 2 3 4 5 6 7 8 12 10 28 | mplcoe5 |  |-  ( ph -> ( y e. D |-> if ( y = Y , .1. , .0. ) ) = ( G gsum ( k e. I |-> ( ( Y ` k ) .^ ( V ` k ) ) ) ) ) |