Step |
Hyp |
Ref |
Expression |
1 |
|
mplcoe1.p |
|- P = ( I mPoly R ) |
2 |
|
mplcoe1.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
3 |
|
mplcoe1.z |
|- .0. = ( 0g ` R ) |
4 |
|
mplcoe1.o |
|- .1. = ( 1r ` R ) |
5 |
|
mplcoe1.i |
|- ( ph -> I e. W ) |
6 |
|
mplcoe2.g |
|- G = ( mulGrp ` P ) |
7 |
|
mplcoe2.m |
|- .^ = ( .g ` G ) |
8 |
|
mplcoe2.v |
|- V = ( I mVar R ) |
9 |
|
mplcoe3.r |
|- ( ph -> R e. Ring ) |
10 |
|
mplcoe3.x |
|- ( ph -> X e. I ) |
11 |
|
mplcoe3.n |
|- ( ph -> N e. NN0 ) |
12 |
|
ifeq1 |
|- ( x = 0 -> if ( k = X , x , 0 ) = if ( k = X , 0 , 0 ) ) |
13 |
|
ifid |
|- if ( k = X , 0 , 0 ) = 0 |
14 |
12 13
|
eqtrdi |
|- ( x = 0 -> if ( k = X , x , 0 ) = 0 ) |
15 |
14
|
mpteq2dv |
|- ( x = 0 -> ( k e. I |-> if ( k = X , x , 0 ) ) = ( k e. I |-> 0 ) ) |
16 |
|
fconstmpt |
|- ( I X. { 0 } ) = ( k e. I |-> 0 ) |
17 |
15 16
|
eqtr4di |
|- ( x = 0 -> ( k e. I |-> if ( k = X , x , 0 ) ) = ( I X. { 0 } ) ) |
18 |
17
|
eqeq2d |
|- ( x = 0 -> ( y = ( k e. I |-> if ( k = X , x , 0 ) ) <-> y = ( I X. { 0 } ) ) ) |
19 |
18
|
ifbid |
|- ( x = 0 -> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) = if ( y = ( I X. { 0 } ) , .1. , .0. ) ) |
20 |
19
|
mpteq2dv |
|- ( x = 0 -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , .1. , .0. ) ) ) |
21 |
|
oveq1 |
|- ( x = 0 -> ( x .^ ( V ` X ) ) = ( 0 .^ ( V ` X ) ) ) |
22 |
20 21
|
eqeq12d |
|- ( x = 0 -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( x .^ ( V ` X ) ) <-> ( y e. D |-> if ( y = ( I X. { 0 } ) , .1. , .0. ) ) = ( 0 .^ ( V ` X ) ) ) ) |
23 |
22
|
imbi2d |
|- ( x = 0 -> ( ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( x .^ ( V ` X ) ) ) <-> ( ph -> ( y e. D |-> if ( y = ( I X. { 0 } ) , .1. , .0. ) ) = ( 0 .^ ( V ` X ) ) ) ) ) |
24 |
|
ifeq1 |
|- ( x = n -> if ( k = X , x , 0 ) = if ( k = X , n , 0 ) ) |
25 |
24
|
mpteq2dv |
|- ( x = n -> ( k e. I |-> if ( k = X , x , 0 ) ) = ( k e. I |-> if ( k = X , n , 0 ) ) ) |
26 |
25
|
eqeq2d |
|- ( x = n -> ( y = ( k e. I |-> if ( k = X , x , 0 ) ) <-> y = ( k e. I |-> if ( k = X , n , 0 ) ) ) ) |
27 |
26
|
ifbid |
|- ( x = n -> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) = if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) |
28 |
27
|
mpteq2dv |
|- ( x = n -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) ) |
29 |
|
oveq1 |
|- ( x = n -> ( x .^ ( V ` X ) ) = ( n .^ ( V ` X ) ) ) |
30 |
28 29
|
eqeq12d |
|- ( x = n -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( x .^ ( V ` X ) ) <-> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) = ( n .^ ( V ` X ) ) ) ) |
31 |
30
|
imbi2d |
|- ( x = n -> ( ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( x .^ ( V ` X ) ) ) <-> ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) = ( n .^ ( V ` X ) ) ) ) ) |
32 |
|
ifeq1 |
|- ( x = ( n + 1 ) -> if ( k = X , x , 0 ) = if ( k = X , ( n + 1 ) , 0 ) ) |
33 |
32
|
mpteq2dv |
|- ( x = ( n + 1 ) -> ( k e. I |-> if ( k = X , x , 0 ) ) = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) ) |
34 |
33
|
eqeq2d |
|- ( x = ( n + 1 ) -> ( y = ( k e. I |-> if ( k = X , x , 0 ) ) <-> y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) ) ) |
35 |
34
|
ifbid |
|- ( x = ( n + 1 ) -> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) = if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) |
36 |
35
|
mpteq2dv |
|- ( x = ( n + 1 ) -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) ) |
37 |
|
oveq1 |
|- ( x = ( n + 1 ) -> ( x .^ ( V ` X ) ) = ( ( n + 1 ) .^ ( V ` X ) ) ) |
38 |
36 37
|
eqeq12d |
|- ( x = ( n + 1 ) -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( x .^ ( V ` X ) ) <-> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) = ( ( n + 1 ) .^ ( V ` X ) ) ) ) |
39 |
38
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( x .^ ( V ` X ) ) ) <-> ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) = ( ( n + 1 ) .^ ( V ` X ) ) ) ) ) |
40 |
|
ifeq1 |
|- ( x = N -> if ( k = X , x , 0 ) = if ( k = X , N , 0 ) ) |
41 |
40
|
mpteq2dv |
|- ( x = N -> ( k e. I |-> if ( k = X , x , 0 ) ) = ( k e. I |-> if ( k = X , N , 0 ) ) ) |
42 |
41
|
eqeq2d |
|- ( x = N -> ( y = ( k e. I |-> if ( k = X , x , 0 ) ) <-> y = ( k e. I |-> if ( k = X , N , 0 ) ) ) ) |
43 |
42
|
ifbid |
|- ( x = N -> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) = if ( y = ( k e. I |-> if ( k = X , N , 0 ) ) , .1. , .0. ) ) |
44 |
43
|
mpteq2dv |
|- ( x = N -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , N , 0 ) ) , .1. , .0. ) ) ) |
45 |
|
oveq1 |
|- ( x = N -> ( x .^ ( V ` X ) ) = ( N .^ ( V ` X ) ) ) |
46 |
44 45
|
eqeq12d |
|- ( x = N -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( x .^ ( V ` X ) ) <-> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , N , 0 ) ) , .1. , .0. ) ) = ( N .^ ( V ` X ) ) ) ) |
47 |
46
|
imbi2d |
|- ( x = N -> ( ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( x .^ ( V ` X ) ) ) <-> ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , N , 0 ) ) , .1. , .0. ) ) = ( N .^ ( V ` X ) ) ) ) ) |
48 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
49 |
1 8 48 5 9 10
|
mvrcl |
|- ( ph -> ( V ` X ) e. ( Base ` P ) ) |
50 |
6 48
|
mgpbas |
|- ( Base ` P ) = ( Base ` G ) |
51 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
52 |
6 51
|
ringidval |
|- ( 1r ` P ) = ( 0g ` G ) |
53 |
50 52 7
|
mulg0 |
|- ( ( V ` X ) e. ( Base ` P ) -> ( 0 .^ ( V ` X ) ) = ( 1r ` P ) ) |
54 |
49 53
|
syl |
|- ( ph -> ( 0 .^ ( V ` X ) ) = ( 1r ` P ) ) |
55 |
1 2 3 4 51 5 9
|
mpl1 |
|- ( ph -> ( 1r ` P ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , .1. , .0. ) ) ) |
56 |
54 55
|
eqtr2d |
|- ( ph -> ( y e. D |-> if ( y = ( I X. { 0 } ) , .1. , .0. ) ) = ( 0 .^ ( V ` X ) ) ) |
57 |
|
oveq1 |
|- ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) = ( n .^ ( V ` X ) ) -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) ( .r ` P ) ( V ` X ) ) = ( ( n .^ ( V ` X ) ) ( .r ` P ) ( V ` X ) ) ) |
58 |
5
|
adantr |
|- ( ( ph /\ n e. NN0 ) -> I e. W ) |
59 |
9
|
adantr |
|- ( ( ph /\ n e. NN0 ) -> R e. Ring ) |
60 |
2
|
snifpsrbag |
|- ( ( I e. W /\ n e. NN0 ) -> ( k e. I |-> if ( k = X , n , 0 ) ) e. D ) |
61 |
5 60
|
sylan |
|- ( ( ph /\ n e. NN0 ) -> ( k e. I |-> if ( k = X , n , 0 ) ) e. D ) |
62 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
63 |
|
1nn0 |
|- 1 e. NN0 |
64 |
63
|
a1i |
|- ( n e. NN0 -> 1 e. NN0 ) |
65 |
2
|
snifpsrbag |
|- ( ( I e. W /\ 1 e. NN0 ) -> ( k e. I |-> if ( k = X , 1 , 0 ) ) e. D ) |
66 |
5 64 65
|
syl2an |
|- ( ( ph /\ n e. NN0 ) -> ( k e. I |-> if ( k = X , 1 , 0 ) ) e. D ) |
67 |
1 48 3 4 2 58 59 61 62 66
|
mplmonmul |
|- ( ( ph /\ n e. NN0 ) -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) ( .r ` P ) ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , 1 , 0 ) ) , .1. , .0. ) ) ) = ( y e. D |-> if ( y = ( ( k e. I |-> if ( k = X , n , 0 ) ) oF + ( k e. I |-> if ( k = X , 1 , 0 ) ) ) , .1. , .0. ) ) ) |
68 |
10
|
adantr |
|- ( ( ph /\ n e. NN0 ) -> X e. I ) |
69 |
8 2 3 4 58 59 68
|
mvrval |
|- ( ( ph /\ n e. NN0 ) -> ( V ` X ) = ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , 1 , 0 ) ) , .1. , .0. ) ) ) |
70 |
69
|
eqcomd |
|- ( ( ph /\ n e. NN0 ) -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , 1 , 0 ) ) , .1. , .0. ) ) = ( V ` X ) ) |
71 |
70
|
oveq2d |
|- ( ( ph /\ n e. NN0 ) -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) ( .r ` P ) ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , 1 , 0 ) ) , .1. , .0. ) ) ) = ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) ( .r ` P ) ( V ` X ) ) ) |
72 |
|
simplr |
|- ( ( ( ph /\ n e. NN0 ) /\ k e. I ) -> n e. NN0 ) |
73 |
|
0nn0 |
|- 0 e. NN0 |
74 |
|
ifcl |
|- ( ( n e. NN0 /\ 0 e. NN0 ) -> if ( k = X , n , 0 ) e. NN0 ) |
75 |
72 73 74
|
sylancl |
|- ( ( ( ph /\ n e. NN0 ) /\ k e. I ) -> if ( k = X , n , 0 ) e. NN0 ) |
76 |
63 73
|
ifcli |
|- if ( k = X , 1 , 0 ) e. NN0 |
77 |
76
|
a1i |
|- ( ( ( ph /\ n e. NN0 ) /\ k e. I ) -> if ( k = X , 1 , 0 ) e. NN0 ) |
78 |
|
eqidd |
|- ( ( ph /\ n e. NN0 ) -> ( k e. I |-> if ( k = X , n , 0 ) ) = ( k e. I |-> if ( k = X , n , 0 ) ) ) |
79 |
|
eqidd |
|- ( ( ph /\ n e. NN0 ) -> ( k e. I |-> if ( k = X , 1 , 0 ) ) = ( k e. I |-> if ( k = X , 1 , 0 ) ) ) |
80 |
58 75 77 78 79
|
offval2 |
|- ( ( ph /\ n e. NN0 ) -> ( ( k e. I |-> if ( k = X , n , 0 ) ) oF + ( k e. I |-> if ( k = X , 1 , 0 ) ) ) = ( k e. I |-> ( if ( k = X , n , 0 ) + if ( k = X , 1 , 0 ) ) ) ) |
81 |
|
iftrue |
|- ( k = X -> if ( k = X , n , 0 ) = n ) |
82 |
|
iftrue |
|- ( k = X -> if ( k = X , 1 , 0 ) = 1 ) |
83 |
81 82
|
oveq12d |
|- ( k = X -> ( if ( k = X , n , 0 ) + if ( k = X , 1 , 0 ) ) = ( n + 1 ) ) |
84 |
|
iftrue |
|- ( k = X -> if ( k = X , ( n + 1 ) , 0 ) = ( n + 1 ) ) |
85 |
83 84
|
eqtr4d |
|- ( k = X -> ( if ( k = X , n , 0 ) + if ( k = X , 1 , 0 ) ) = if ( k = X , ( n + 1 ) , 0 ) ) |
86 |
|
00id |
|- ( 0 + 0 ) = 0 |
87 |
|
iffalse |
|- ( -. k = X -> if ( k = X , n , 0 ) = 0 ) |
88 |
|
iffalse |
|- ( -. k = X -> if ( k = X , 1 , 0 ) = 0 ) |
89 |
87 88
|
oveq12d |
|- ( -. k = X -> ( if ( k = X , n , 0 ) + if ( k = X , 1 , 0 ) ) = ( 0 + 0 ) ) |
90 |
|
iffalse |
|- ( -. k = X -> if ( k = X , ( n + 1 ) , 0 ) = 0 ) |
91 |
86 89 90
|
3eqtr4a |
|- ( -. k = X -> ( if ( k = X , n , 0 ) + if ( k = X , 1 , 0 ) ) = if ( k = X , ( n + 1 ) , 0 ) ) |
92 |
85 91
|
pm2.61i |
|- ( if ( k = X , n , 0 ) + if ( k = X , 1 , 0 ) ) = if ( k = X , ( n + 1 ) , 0 ) |
93 |
92
|
mpteq2i |
|- ( k e. I |-> ( if ( k = X , n , 0 ) + if ( k = X , 1 , 0 ) ) ) = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) |
94 |
80 93
|
eqtrdi |
|- ( ( ph /\ n e. NN0 ) -> ( ( k e. I |-> if ( k = X , n , 0 ) ) oF + ( k e. I |-> if ( k = X , 1 , 0 ) ) ) = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) ) |
95 |
94
|
eqeq2d |
|- ( ( ph /\ n e. NN0 ) -> ( y = ( ( k e. I |-> if ( k = X , n , 0 ) ) oF + ( k e. I |-> if ( k = X , 1 , 0 ) ) ) <-> y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) ) ) |
96 |
95
|
ifbid |
|- ( ( ph /\ n e. NN0 ) -> if ( y = ( ( k e. I |-> if ( k = X , n , 0 ) ) oF + ( k e. I |-> if ( k = X , 1 , 0 ) ) ) , .1. , .0. ) = if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) |
97 |
96
|
mpteq2dv |
|- ( ( ph /\ n e. NN0 ) -> ( y e. D |-> if ( y = ( ( k e. I |-> if ( k = X , n , 0 ) ) oF + ( k e. I |-> if ( k = X , 1 , 0 ) ) ) , .1. , .0. ) ) = ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) ) |
98 |
67 71 97
|
3eqtr3rd |
|- ( ( ph /\ n e. NN0 ) -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) = ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) ( .r ` P ) ( V ` X ) ) ) |
99 |
1
|
mplring |
|- ( ( I e. W /\ R e. Ring ) -> P e. Ring ) |
100 |
5 9 99
|
syl2anc |
|- ( ph -> P e. Ring ) |
101 |
6
|
ringmgp |
|- ( P e. Ring -> G e. Mnd ) |
102 |
100 101
|
syl |
|- ( ph -> G e. Mnd ) |
103 |
102
|
adantr |
|- ( ( ph /\ n e. NN0 ) -> G e. Mnd ) |
104 |
|
simpr |
|- ( ( ph /\ n e. NN0 ) -> n e. NN0 ) |
105 |
49
|
adantr |
|- ( ( ph /\ n e. NN0 ) -> ( V ` X ) e. ( Base ` P ) ) |
106 |
6 62
|
mgpplusg |
|- ( .r ` P ) = ( +g ` G ) |
107 |
50 7 106
|
mulgnn0p1 |
|- ( ( G e. Mnd /\ n e. NN0 /\ ( V ` X ) e. ( Base ` P ) ) -> ( ( n + 1 ) .^ ( V ` X ) ) = ( ( n .^ ( V ` X ) ) ( .r ` P ) ( V ` X ) ) ) |
108 |
103 104 105 107
|
syl3anc |
|- ( ( ph /\ n e. NN0 ) -> ( ( n + 1 ) .^ ( V ` X ) ) = ( ( n .^ ( V ` X ) ) ( .r ` P ) ( V ` X ) ) ) |
109 |
98 108
|
eqeq12d |
|- ( ( ph /\ n e. NN0 ) -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) = ( ( n + 1 ) .^ ( V ` X ) ) <-> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) ( .r ` P ) ( V ` X ) ) = ( ( n .^ ( V ` X ) ) ( .r ` P ) ( V ` X ) ) ) ) |
110 |
57 109
|
syl5ibr |
|- ( ( ph /\ n e. NN0 ) -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) = ( n .^ ( V ` X ) ) -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) = ( ( n + 1 ) .^ ( V ` X ) ) ) ) |
111 |
110
|
expcom |
|- ( n e. NN0 -> ( ph -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) = ( n .^ ( V ` X ) ) -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) = ( ( n + 1 ) .^ ( V ` X ) ) ) ) ) |
112 |
111
|
a2d |
|- ( n e. NN0 -> ( ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) = ( n .^ ( V ` X ) ) ) -> ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) = ( ( n + 1 ) .^ ( V ` X ) ) ) ) ) |
113 |
23 31 39 47 56 112
|
nn0ind |
|- ( N e. NN0 -> ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , N , 0 ) ) , .1. , .0. ) ) = ( N .^ ( V ` X ) ) ) ) |
114 |
11 113
|
mpcom |
|- ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , N , 0 ) ) , .1. , .0. ) ) = ( N .^ ( V ` X ) ) ) |