| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplcoe4.p |  |-  P = ( I mPoly R ) | 
						
							| 2 |  | mplcoe4.d |  |-  D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 3 |  | mplcoe4.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | mplcoe4.b |  |-  B = ( Base ` P ) | 
						
							| 5 |  | mplcoe4.i |  |-  ( ph -> I e. W ) | 
						
							| 6 |  | mplcoe4.r |  |-  ( ph -> R e. Ring ) | 
						
							| 7 |  | mplcoe4.x |  |-  ( ph -> X e. B ) | 
						
							| 8 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 9 |  | eqid |  |-  ( .s ` P ) = ( .s ` P ) | 
						
							| 10 | 1 2 3 8 5 4 9 6 7 | mplcoe1 |  |-  ( ph -> X = ( P gsum ( k e. D |-> ( ( X ` k ) ( .s ` P ) ( y e. D |-> if ( y = k , ( 1r ` R ) , .0. ) ) ) ) ) ) | 
						
							| 11 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 12 | 5 | adantr |  |-  ( ( ph /\ k e. D ) -> I e. W ) | 
						
							| 13 | 6 | adantr |  |-  ( ( ph /\ k e. D ) -> R e. Ring ) | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ k e. D ) -> k e. D ) | 
						
							| 15 | 1 11 4 2 7 | mplelf |  |-  ( ph -> X : D --> ( Base ` R ) ) | 
						
							| 16 | 15 | ffvelcdmda |  |-  ( ( ph /\ k e. D ) -> ( X ` k ) e. ( Base ` R ) ) | 
						
							| 17 | 1 9 2 8 3 11 12 13 14 16 | mplmon2 |  |-  ( ( ph /\ k e. D ) -> ( ( X ` k ) ( .s ` P ) ( y e. D |-> if ( y = k , ( 1r ` R ) , .0. ) ) ) = ( y e. D |-> if ( y = k , ( X ` k ) , .0. ) ) ) | 
						
							| 18 | 17 | mpteq2dva |  |-  ( ph -> ( k e. D |-> ( ( X ` k ) ( .s ` P ) ( y e. D |-> if ( y = k , ( 1r ` R ) , .0. ) ) ) ) = ( k e. D |-> ( y e. D |-> if ( y = k , ( X ` k ) , .0. ) ) ) ) | 
						
							| 19 | 18 | oveq2d |  |-  ( ph -> ( P gsum ( k e. D |-> ( ( X ` k ) ( .s ` P ) ( y e. D |-> if ( y = k , ( 1r ` R ) , .0. ) ) ) ) ) = ( P gsum ( k e. D |-> ( y e. D |-> if ( y = k , ( X ` k ) , .0. ) ) ) ) ) | 
						
							| 20 | 10 19 | eqtrd |  |-  ( ph -> X = ( P gsum ( k e. D |-> ( y e. D |-> if ( y = k , ( X ` k ) , .0. ) ) ) ) ) |