| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplgrp.p |  |-  P = ( I mPoly R ) | 
						
							| 2 |  | eqid |  |-  ( I mPwSer R ) = ( I mPwSer R ) | 
						
							| 3 |  | simpl |  |-  ( ( I e. V /\ R e. CRing ) -> I e. V ) | 
						
							| 4 |  | simpr |  |-  ( ( I e. V /\ R e. CRing ) -> R e. CRing ) | 
						
							| 5 | 2 3 4 | psrcrng |  |-  ( ( I e. V /\ R e. CRing ) -> ( I mPwSer R ) e. CRing ) | 
						
							| 6 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 7 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 8 | 7 | adantl |  |-  ( ( I e. V /\ R e. CRing ) -> R e. Ring ) | 
						
							| 9 | 2 1 6 3 8 | mplsubrg |  |-  ( ( I e. V /\ R e. CRing ) -> ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) ) | 
						
							| 10 | 1 2 6 | mplval2 |  |-  P = ( ( I mPwSer R ) |`s ( Base ` P ) ) | 
						
							| 11 | 10 | subrgcrng |  |-  ( ( ( I mPwSer R ) e. CRing /\ ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) ) -> P e. CRing ) | 
						
							| 12 | 5 9 11 | syl2anc |  |-  ( ( I e. V /\ R e. CRing ) -> P e. CRing ) |