Metamath Proof Explorer


Theorem mplcrngd

Description: The polynomial ring is a commutative ring. (Contributed by SN, 7-Feb-2025)

Ref Expression
Hypotheses mplcrngd.p
|- P = ( I mPoly R )
mplcrngd.i
|- ( ph -> I e. V )
mplcrngd.r
|- ( ph -> R e. CRing )
Assertion mplcrngd
|- ( ph -> P e. CRing )

Proof

Step Hyp Ref Expression
1 mplcrngd.p
 |-  P = ( I mPoly R )
2 mplcrngd.i
 |-  ( ph -> I e. V )
3 mplcrngd.r
 |-  ( ph -> R e. CRing )
4 1 mplcrng
 |-  ( ( I e. V /\ R e. CRing ) -> P e. CRing )
5 2 3 4 syl2anc
 |-  ( ph -> P e. CRing )