Metamath Proof Explorer


Theorem mplelbas

Description: Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015) (Revised by AV, 25-Jun-2019)

Ref Expression
Hypotheses mplval.p
|- P = ( I mPoly R )
mplval.s
|- S = ( I mPwSer R )
mplval.b
|- B = ( Base ` S )
mplval.z
|- .0. = ( 0g ` R )
mplbas.u
|- U = ( Base ` P )
Assertion mplelbas
|- ( X e. U <-> ( X e. B /\ X finSupp .0. ) )

Proof

Step Hyp Ref Expression
1 mplval.p
 |-  P = ( I mPoly R )
2 mplval.s
 |-  S = ( I mPwSer R )
3 mplval.b
 |-  B = ( Base ` S )
4 mplval.z
 |-  .0. = ( 0g ` R )
5 mplbas.u
 |-  U = ( Base ` P )
6 breq1
 |-  ( f = X -> ( f finSupp .0. <-> X finSupp .0. ) )
7 1 2 3 4 5 mplbas
 |-  U = { f e. B | f finSupp .0. }
8 6 7 elrab2
 |-  ( X e. U <-> ( X e. B /\ X finSupp .0. ) )