Description: A polynomial is defined as a function on the coefficients. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplelf.p | |- P = ( I mPoly R ) |
|
| mplelf.k | |- K = ( Base ` R ) |
||
| mplelf.b | |- B = ( Base ` P ) |
||
| mplelf.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| mplelf.x | |- ( ph -> X e. B ) |
||
| Assertion | mplelf | |- ( ph -> X : D --> K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplelf.p | |- P = ( I mPoly R ) |
|
| 2 | mplelf.k | |- K = ( Base ` R ) |
|
| 3 | mplelf.b | |- B = ( Base ` P ) |
|
| 4 | mplelf.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 5 | mplelf.x | |- ( ph -> X e. B ) |
|
| 6 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 7 | eqid | |- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
|
| 8 | 1 6 3 7 | mplbasss | |- B C_ ( Base ` ( I mPwSer R ) ) |
| 9 | 8 5 | sselid | |- ( ph -> X e. ( Base ` ( I mPwSer R ) ) ) |
| 10 | 6 2 4 7 9 | psrelbas | |- ( ph -> X : D --> K ) |