| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplgrp.p |  |-  P = ( I mPoly R ) | 
						
							| 2 |  | drngring |  |-  ( R e. DivRing -> R e. Ring ) | 
						
							| 3 | 1 | mpllmod |  |-  ( ( I e. V /\ R e. Ring ) -> P e. LMod ) | 
						
							| 4 | 2 3 | sylan2 |  |-  ( ( I e. V /\ R e. DivRing ) -> P e. LMod ) | 
						
							| 5 |  | simpl |  |-  ( ( I e. V /\ R e. DivRing ) -> I e. V ) | 
						
							| 6 |  | simpr |  |-  ( ( I e. V /\ R e. DivRing ) -> R e. DivRing ) | 
						
							| 7 | 1 5 6 | mplsca |  |-  ( ( I e. V /\ R e. DivRing ) -> R = ( Scalar ` P ) ) | 
						
							| 8 | 7 6 | eqeltrrd |  |-  ( ( I e. V /\ R e. DivRing ) -> ( Scalar ` P ) e. DivRing ) | 
						
							| 9 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 10 | 9 | islvec |  |-  ( P e. LVec <-> ( P e. LMod /\ ( Scalar ` P ) e. DivRing ) ) | 
						
							| 11 | 4 8 10 | sylanbrc |  |-  ( ( I e. V /\ R e. DivRing ) -> P e. LVec ) |