| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplmon.s |  |-  P = ( I mPoly R ) | 
						
							| 2 |  | mplmon.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | mplmon.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | mplmon.o |  |-  .1. = ( 1r ` R ) | 
						
							| 5 |  | mplmon.d |  |-  D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 6 |  | mplmon.i |  |-  ( ph -> I e. W ) | 
						
							| 7 |  | mplmon.r |  |-  ( ph -> R e. Ring ) | 
						
							| 8 |  | mplmon.x |  |-  ( ph -> X e. D ) | 
						
							| 9 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 10 | 9 4 | ringidcl |  |-  ( R e. Ring -> .1. e. ( Base ` R ) ) | 
						
							| 11 | 9 3 | ring0cl |  |-  ( R e. Ring -> .0. e. ( Base ` R ) ) | 
						
							| 12 | 10 11 | ifcld |  |-  ( R e. Ring -> if ( y = X , .1. , .0. ) e. ( Base ` R ) ) | 
						
							| 13 | 7 12 | syl |  |-  ( ph -> if ( y = X , .1. , .0. ) e. ( Base ` R ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ y e. D ) -> if ( y = X , .1. , .0. ) e. ( Base ` R ) ) | 
						
							| 15 | 14 | fmpttd |  |-  ( ph -> ( y e. D |-> if ( y = X , .1. , .0. ) ) : D --> ( Base ` R ) ) | 
						
							| 16 |  | fvex |  |-  ( Base ` R ) e. _V | 
						
							| 17 |  | ovex |  |-  ( NN0 ^m I ) e. _V | 
						
							| 18 | 5 17 | rabex2 |  |-  D e. _V | 
						
							| 19 | 16 18 | elmap |  |-  ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. ( ( Base ` R ) ^m D ) <-> ( y e. D |-> if ( y = X , .1. , .0. ) ) : D --> ( Base ` R ) ) | 
						
							| 20 | 15 19 | sylibr |  |-  ( ph -> ( y e. D |-> if ( y = X , .1. , .0. ) ) e. ( ( Base ` R ) ^m D ) ) | 
						
							| 21 |  | eqid |  |-  ( I mPwSer R ) = ( I mPwSer R ) | 
						
							| 22 |  | eqid |  |-  ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) | 
						
							| 23 | 21 9 5 22 6 | psrbas |  |-  ( ph -> ( Base ` ( I mPwSer R ) ) = ( ( Base ` R ) ^m D ) ) | 
						
							| 24 | 20 23 | eleqtrrd |  |-  ( ph -> ( y e. D |-> if ( y = X , .1. , .0. ) ) e. ( Base ` ( I mPwSer R ) ) ) | 
						
							| 25 | 18 | mptex |  |-  ( y e. D |-> if ( y = X , .1. , .0. ) ) e. _V | 
						
							| 26 |  | funmpt |  |-  Fun ( y e. D |-> if ( y = X , .1. , .0. ) ) | 
						
							| 27 | 3 | fvexi |  |-  .0. e. _V | 
						
							| 28 | 25 26 27 | 3pm3.2i |  |-  ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. _V /\ Fun ( y e. D |-> if ( y = X , .1. , .0. ) ) /\ .0. e. _V ) | 
						
							| 29 | 28 | a1i |  |-  ( ph -> ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. _V /\ Fun ( y e. D |-> if ( y = X , .1. , .0. ) ) /\ .0. e. _V ) ) | 
						
							| 30 |  | snfi |  |-  { X } e. Fin | 
						
							| 31 | 30 | a1i |  |-  ( ph -> { X } e. Fin ) | 
						
							| 32 |  | eldifsni |  |-  ( y e. ( D \ { X } ) -> y =/= X ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ph /\ y e. ( D \ { X } ) ) -> y =/= X ) | 
						
							| 34 | 33 | neneqd |  |-  ( ( ph /\ y e. ( D \ { X } ) ) -> -. y = X ) | 
						
							| 35 | 34 | iffalsed |  |-  ( ( ph /\ y e. ( D \ { X } ) ) -> if ( y = X , .1. , .0. ) = .0. ) | 
						
							| 36 | 18 | a1i |  |-  ( ph -> D e. _V ) | 
						
							| 37 | 35 36 | suppss2 |  |-  ( ph -> ( ( y e. D |-> if ( y = X , .1. , .0. ) ) supp .0. ) C_ { X } ) | 
						
							| 38 |  | suppssfifsupp |  |-  ( ( ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. _V /\ Fun ( y e. D |-> if ( y = X , .1. , .0. ) ) /\ .0. e. _V ) /\ ( { X } e. Fin /\ ( ( y e. D |-> if ( y = X , .1. , .0. ) ) supp .0. ) C_ { X } ) ) -> ( y e. D |-> if ( y = X , .1. , .0. ) ) finSupp .0. ) | 
						
							| 39 | 29 31 37 38 | syl12anc |  |-  ( ph -> ( y e. D |-> if ( y = X , .1. , .0. ) ) finSupp .0. ) | 
						
							| 40 | 1 21 22 3 2 | mplelbas |  |-  ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. B <-> ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. ( Base ` ( I mPwSer R ) ) /\ ( y e. D |-> if ( y = X , .1. , .0. ) ) finSupp .0. ) ) | 
						
							| 41 | 24 39 40 | sylanbrc |  |-  ( ph -> ( y e. D |-> if ( y = X , .1. , .0. ) ) e. B ) |