Step |
Hyp |
Ref |
Expression |
1 |
|
mplmon.s |
|- P = ( I mPoly R ) |
2 |
|
mplmon.b |
|- B = ( Base ` P ) |
3 |
|
mplmon.z |
|- .0. = ( 0g ` R ) |
4 |
|
mplmon.o |
|- .1. = ( 1r ` R ) |
5 |
|
mplmon.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
6 |
|
mplmon.i |
|- ( ph -> I e. W ) |
7 |
|
mplmon.r |
|- ( ph -> R e. Ring ) |
8 |
|
mplmon.x |
|- ( ph -> X e. D ) |
9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
10 |
9 4
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
11 |
9 3
|
ring0cl |
|- ( R e. Ring -> .0. e. ( Base ` R ) ) |
12 |
10 11
|
ifcld |
|- ( R e. Ring -> if ( y = X , .1. , .0. ) e. ( Base ` R ) ) |
13 |
7 12
|
syl |
|- ( ph -> if ( y = X , .1. , .0. ) e. ( Base ` R ) ) |
14 |
13
|
adantr |
|- ( ( ph /\ y e. D ) -> if ( y = X , .1. , .0. ) e. ( Base ` R ) ) |
15 |
14
|
fmpttd |
|- ( ph -> ( y e. D |-> if ( y = X , .1. , .0. ) ) : D --> ( Base ` R ) ) |
16 |
|
fvex |
|- ( Base ` R ) e. _V |
17 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
18 |
5 17
|
rabex2 |
|- D e. _V |
19 |
16 18
|
elmap |
|- ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. ( ( Base ` R ) ^m D ) <-> ( y e. D |-> if ( y = X , .1. , .0. ) ) : D --> ( Base ` R ) ) |
20 |
15 19
|
sylibr |
|- ( ph -> ( y e. D |-> if ( y = X , .1. , .0. ) ) e. ( ( Base ` R ) ^m D ) ) |
21 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
22 |
|
eqid |
|- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
23 |
21 9 5 22 6
|
psrbas |
|- ( ph -> ( Base ` ( I mPwSer R ) ) = ( ( Base ` R ) ^m D ) ) |
24 |
20 23
|
eleqtrrd |
|- ( ph -> ( y e. D |-> if ( y = X , .1. , .0. ) ) e. ( Base ` ( I mPwSer R ) ) ) |
25 |
18
|
mptex |
|- ( y e. D |-> if ( y = X , .1. , .0. ) ) e. _V |
26 |
|
funmpt |
|- Fun ( y e. D |-> if ( y = X , .1. , .0. ) ) |
27 |
3
|
fvexi |
|- .0. e. _V |
28 |
25 26 27
|
3pm3.2i |
|- ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. _V /\ Fun ( y e. D |-> if ( y = X , .1. , .0. ) ) /\ .0. e. _V ) |
29 |
28
|
a1i |
|- ( ph -> ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. _V /\ Fun ( y e. D |-> if ( y = X , .1. , .0. ) ) /\ .0. e. _V ) ) |
30 |
|
snfi |
|- { X } e. Fin |
31 |
30
|
a1i |
|- ( ph -> { X } e. Fin ) |
32 |
|
eldifsni |
|- ( y e. ( D \ { X } ) -> y =/= X ) |
33 |
32
|
adantl |
|- ( ( ph /\ y e. ( D \ { X } ) ) -> y =/= X ) |
34 |
33
|
neneqd |
|- ( ( ph /\ y e. ( D \ { X } ) ) -> -. y = X ) |
35 |
34
|
iffalsed |
|- ( ( ph /\ y e. ( D \ { X } ) ) -> if ( y = X , .1. , .0. ) = .0. ) |
36 |
18
|
a1i |
|- ( ph -> D e. _V ) |
37 |
35 36
|
suppss2 |
|- ( ph -> ( ( y e. D |-> if ( y = X , .1. , .0. ) ) supp .0. ) C_ { X } ) |
38 |
|
suppssfifsupp |
|- ( ( ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. _V /\ Fun ( y e. D |-> if ( y = X , .1. , .0. ) ) /\ .0. e. _V ) /\ ( { X } e. Fin /\ ( ( y e. D |-> if ( y = X , .1. , .0. ) ) supp .0. ) C_ { X } ) ) -> ( y e. D |-> if ( y = X , .1. , .0. ) ) finSupp .0. ) |
39 |
29 31 37 38
|
syl12anc |
|- ( ph -> ( y e. D |-> if ( y = X , .1. , .0. ) ) finSupp .0. ) |
40 |
1 21 22 3 2
|
mplelbas |
|- ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. B <-> ( ( y e. D |-> if ( y = X , .1. , .0. ) ) e. ( Base ` ( I mPwSer R ) ) /\ ( y e. D |-> if ( y = X , .1. , .0. ) ) finSupp .0. ) ) |
41 |
24 39 40
|
sylanbrc |
|- ( ph -> ( y e. D |-> if ( y = X , .1. , .0. ) ) e. B ) |