| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplmon2cl.p |  |-  P = ( I mPoly R ) | 
						
							| 2 |  | mplmon2cl.d |  |-  D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 3 |  | mplmon2cl.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | mplmon2cl.c |  |-  C = ( Base ` R ) | 
						
							| 5 |  | mplmon2cl.i |  |-  ( ph -> I e. W ) | 
						
							| 6 |  | mplmon2cl.r |  |-  ( ph -> R e. Ring ) | 
						
							| 7 |  | mplmon2cl.b |  |-  B = ( Base ` P ) | 
						
							| 8 |  | mplmon2cl.x |  |-  ( ph -> X e. C ) | 
						
							| 9 |  | mplmon2cl.k |  |-  ( ph -> K e. D ) | 
						
							| 10 |  | eqid |  |-  ( .s ` P ) = ( .s ` P ) | 
						
							| 11 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 12 | 1 10 2 11 3 4 5 6 9 8 | mplmon2 |  |-  ( ph -> ( X ( .s ` P ) ( y e. D |-> if ( y = K , ( 1r ` R ) , .0. ) ) ) = ( y e. D |-> if ( y = K , X , .0. ) ) ) | 
						
							| 13 | 1 5 6 | mpllmodd |  |-  ( ph -> P e. LMod ) | 
						
							| 14 | 1 5 6 | mplsca |  |-  ( ph -> R = ( Scalar ` P ) ) | 
						
							| 15 | 14 | fveq2d |  |-  ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) | 
						
							| 16 | 4 15 | eqtrid |  |-  ( ph -> C = ( Base ` ( Scalar ` P ) ) ) | 
						
							| 17 | 8 16 | eleqtrd |  |-  ( ph -> X e. ( Base ` ( Scalar ` P ) ) ) | 
						
							| 18 | 1 7 3 11 2 5 6 9 | mplmon |  |-  ( ph -> ( y e. D |-> if ( y = K , ( 1r ` R ) , .0. ) ) e. B ) | 
						
							| 19 |  | eqid |  |-  ( Scalar ` P ) = ( Scalar ` P ) | 
						
							| 20 |  | eqid |  |-  ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) | 
						
							| 21 | 7 19 10 20 | lmodvscl |  |-  ( ( P e. LMod /\ X e. ( Base ` ( Scalar ` P ) ) /\ ( y e. D |-> if ( y = K , ( 1r ` R ) , .0. ) ) e. B ) -> ( X ( .s ` P ) ( y e. D |-> if ( y = K , ( 1r ` R ) , .0. ) ) ) e. B ) | 
						
							| 22 | 13 17 18 21 | syl3anc |  |-  ( ph -> ( X ( .s ` P ) ( y e. D |-> if ( y = K , ( 1r ` R ) , .0. ) ) ) e. B ) | 
						
							| 23 | 12 22 | eqeltrrd |  |-  ( ph -> ( y e. D |-> if ( y = K , X , .0. ) ) e. B ) |