| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplmul.p |  |-  P = ( I mPoly R ) | 
						
							| 2 |  | mplmul.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | mplmul.m |  |-  .x. = ( .r ` R ) | 
						
							| 4 |  | mplmul.t |  |-  .xb = ( .r ` P ) | 
						
							| 5 |  | mplmul.d |  |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | 
						
							| 6 |  | mplmul.f |  |-  ( ph -> F e. B ) | 
						
							| 7 |  | mplmul.g |  |-  ( ph -> G e. B ) | 
						
							| 8 |  | eqid |  |-  ( I mPwSer R ) = ( I mPwSer R ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) | 
						
							| 10 | 1 8 4 | mplmulr |  |-  .xb = ( .r ` ( I mPwSer R ) ) | 
						
							| 11 | 1 8 2 9 | mplbasss |  |-  B C_ ( Base ` ( I mPwSer R ) ) | 
						
							| 12 | 11 6 | sselid |  |-  ( ph -> F e. ( Base ` ( I mPwSer R ) ) ) | 
						
							| 13 | 11 7 | sselid |  |-  ( ph -> G e. ( Base ` ( I mPwSer R ) ) ) | 
						
							| 14 | 8 9 3 10 5 12 13 | psrmulfval |  |-  ( ph -> ( F .xb G ) = ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( F ` x ) .x. ( G ` ( k oF - x ) ) ) ) ) ) ) |