Metamath Proof Explorer


Theorem mplmul

Description: The multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mplmul.p
|- P = ( I mPoly R )
mplmul.b
|- B = ( Base ` P )
mplmul.m
|- .x. = ( .r ` R )
mplmul.t
|- .xb = ( .r ` P )
mplmul.d
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
mplmul.f
|- ( ph -> F e. B )
mplmul.g
|- ( ph -> G e. B )
Assertion mplmul
|- ( ph -> ( F .xb G ) = ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( F ` x ) .x. ( G ` ( k oF - x ) ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mplmul.p
 |-  P = ( I mPoly R )
2 mplmul.b
 |-  B = ( Base ` P )
3 mplmul.m
 |-  .x. = ( .r ` R )
4 mplmul.t
 |-  .xb = ( .r ` P )
5 mplmul.d
 |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
6 mplmul.f
 |-  ( ph -> F e. B )
7 mplmul.g
 |-  ( ph -> G e. B )
8 eqid
 |-  ( I mPwSer R ) = ( I mPwSer R )
9 eqid
 |-  ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) )
10 2 fvexi
 |-  B e. _V
11 1 8 2 mplval2
 |-  P = ( ( I mPwSer R ) |`s B )
12 eqid
 |-  ( .r ` ( I mPwSer R ) ) = ( .r ` ( I mPwSer R ) )
13 11 12 ressmulr
 |-  ( B e. _V -> ( .r ` ( I mPwSer R ) ) = ( .r ` P ) )
14 10 13 ax-mp
 |-  ( .r ` ( I mPwSer R ) ) = ( .r ` P )
15 4 14 eqtr4i
 |-  .xb = ( .r ` ( I mPwSer R ) )
16 1 8 2 9 mplbasss
 |-  B C_ ( Base ` ( I mPwSer R ) )
17 16 6 sseldi
 |-  ( ph -> F e. ( Base ` ( I mPwSer R ) ) )
18 16 7 sseldi
 |-  ( ph -> G e. ( Base ` ( I mPwSer R ) ) )
19 8 9 3 15 5 17 18 psrmulfval
 |-  ( ph -> ( F .xb G ) = ( k e. D |-> ( R gsum ( x e. { y e. D | y oR <_ k } |-> ( ( F ` x ) .x. ( G ` ( k oF - x ) ) ) ) ) ) )