| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplneg.p |  |-  P = ( I mPoly R ) | 
						
							| 2 |  | mplneg.b |  |-  B = ( Base ` P ) | 
						
							| 3 |  | mplneg.n |  |-  N = ( invg ` R ) | 
						
							| 4 |  | mplneg.m |  |-  M = ( invg ` P ) | 
						
							| 5 |  | mplneg.i |  |-  ( ph -> I e. V ) | 
						
							| 6 |  | mplneg.r |  |-  ( ph -> R e. Grp ) | 
						
							| 7 |  | mplneg.x |  |-  ( ph -> X e. B ) | 
						
							| 8 |  | eqid |  |-  ( I mPwSer R ) = ( I mPwSer R ) | 
						
							| 9 | 8 1 2 5 6 | mplsubg |  |-  ( ph -> B e. ( SubGrp ` ( I mPwSer R ) ) ) | 
						
							| 10 | 1 8 2 | mplval2 |  |-  P = ( ( I mPwSer R ) |`s B ) | 
						
							| 11 |  | eqid |  |-  ( invg ` ( I mPwSer R ) ) = ( invg ` ( I mPwSer R ) ) | 
						
							| 12 | 10 11 4 | subginv |  |-  ( ( B e. ( SubGrp ` ( I mPwSer R ) ) /\ X e. B ) -> ( ( invg ` ( I mPwSer R ) ) ` X ) = ( M ` X ) ) | 
						
							| 13 | 9 7 12 | syl2anc |  |-  ( ph -> ( ( invg ` ( I mPwSer R ) ) ` X ) = ( M ` X ) ) | 
						
							| 14 |  | eqid |  |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 15 |  | eqid |  |-  ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) | 
						
							| 16 | 1 8 2 15 | mplbasss |  |-  B C_ ( Base ` ( I mPwSer R ) ) | 
						
							| 17 | 16 | sseli |  |-  ( X e. B -> X e. ( Base ` ( I mPwSer R ) ) ) | 
						
							| 18 | 7 17 | syl |  |-  ( ph -> X e. ( Base ` ( I mPwSer R ) ) ) | 
						
							| 19 | 8 5 6 14 3 15 11 18 | psrneg |  |-  ( ph -> ( ( invg ` ( I mPwSer R ) ) ` X ) = ( N o. X ) ) | 
						
							| 20 | 13 19 | eqtr3d |  |-  ( ph -> ( M ` X ) = ( N o. X ) ) |