Metamath Proof Explorer


Theorem mplplusg

Description: Value of addition in a polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mplplusg.y
|- Y = ( I mPoly R )
mplplusg.s
|- S = ( I mPwSer R )
mplplusg.p
|- .+ = ( +g ` Y )
Assertion mplplusg
|- .+ = ( +g ` S )

Proof

Step Hyp Ref Expression
1 mplplusg.y
 |-  Y = ( I mPoly R )
2 mplplusg.s
 |-  S = ( I mPwSer R )
3 mplplusg.p
 |-  .+ = ( +g ` Y )
4 fvex
 |-  ( Base ` Y ) e. _V
5 eqid
 |-  ( Base ` Y ) = ( Base ` Y )
6 1 2 5 mplval2
 |-  Y = ( S |`s ( Base ` Y ) )
7 eqid
 |-  ( +g ` S ) = ( +g ` S )
8 6 7 ressplusg
 |-  ( ( Base ` Y ) e. _V -> ( +g ` S ) = ( +g ` Y ) )
9 4 8 ax-mp
 |-  ( +g ` S ) = ( +g ` Y )
10 3 9 eqtr4i
 |-  .+ = ( +g ` S )