Metamath Proof Explorer
Description: Reverse closure for the polynomial index set. (Contributed by Stefan
O'Rear, 19-Mar-2015) (Revised by Mario Carneiro, 30-Aug-2015)
|
|
Ref |
Expression |
|
Hypotheses |
mplrcl.p |
|- P = ( I mPoly R ) |
|
|
mplrcl.b |
|- B = ( Base ` P ) |
|
Assertion |
mplrcl |
|- ( X e. B -> I e. _V ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mplrcl.p |
|- P = ( I mPoly R ) |
2 |
|
mplrcl.b |
|- B = ( Base ` P ) |
3 |
|
reldmmpl |
|- Rel dom mPoly |
4 |
1 2 3
|
strov2rcl |
|- ( X e. B -> I e. _V ) |