| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mplsubg.s |  |-  S = ( I mPwSer R ) | 
						
							| 2 |  | mplsubg.p |  |-  P = ( I mPoly R ) | 
						
							| 3 |  | mplsubg.u |  |-  U = ( Base ` P ) | 
						
							| 4 |  | mplsubg.i |  |-  ( ph -> I e. W ) | 
						
							| 5 |  | mplsubg.r |  |-  ( ph -> R e. Grp ) | 
						
							| 6 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 7 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 8 |  | eqid |  |-  { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } | 
						
							| 9 |  | 0fi |  |-  (/) e. Fin | 
						
							| 10 | 9 | a1i |  |-  ( ph -> (/) e. Fin ) | 
						
							| 11 |  | unfi |  |-  ( ( x e. Fin /\ y e. Fin ) -> ( x u. y ) e. Fin ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ph /\ ( x e. Fin /\ y e. Fin ) ) -> ( x u. y ) e. Fin ) | 
						
							| 13 |  | ssfi |  |-  ( ( x e. Fin /\ y C_ x ) -> y e. Fin ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ ( x e. Fin /\ y C_ x ) ) -> y e. Fin ) | 
						
							| 15 | 1 2 3 4 | mplsubglem2 |  |-  ( ph -> U = { g e. ( Base ` S ) | ( g supp ( 0g ` R ) ) e. Fin } ) | 
						
							| 16 | 1 6 7 8 4 10 12 14 15 5 | mplsubglem |  |-  ( ph -> U e. ( SubGrp ` S ) ) |