Description: An element of a polynomial algebra over a subring is an element of the polynomial algebra. (Contributed by SN, 9-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mplsubrgcl.w | |- W = ( I mPoly U ) |
|
mplsubrgcl.u | |- U = ( S |`s R ) |
||
mplsubrgcl.b | |- B = ( Base ` W ) |
||
mplsubrgcl.p | |- P = ( I mPoly S ) |
||
mplsubrgcl.c | |- C = ( Base ` P ) |
||
mplsubrgcl.i | |- ( ph -> I e. V ) |
||
mplsubrgcl.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
mplsubrgcl.f | |- ( ph -> F e. B ) |
||
Assertion | mplsubrgcl | |- ( ph -> F e. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplsubrgcl.w | |- W = ( I mPoly U ) |
|
2 | mplsubrgcl.u | |- U = ( S |`s R ) |
|
3 | mplsubrgcl.b | |- B = ( Base ` W ) |
|
4 | mplsubrgcl.p | |- P = ( I mPoly S ) |
|
5 | mplsubrgcl.c | |- C = ( Base ` P ) |
|
6 | mplsubrgcl.i | |- ( ph -> I e. V ) |
|
7 | mplsubrgcl.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
8 | mplsubrgcl.f | |- ( ph -> F e. B ) |
|
9 | eqid | |- ( P |`s B ) = ( P |`s B ) |
|
10 | 4 2 1 3 6 7 9 | ressmplbas | |- ( ph -> B = ( Base ` ( P |`s B ) ) ) |
11 | 9 5 | ressbasss | |- ( Base ` ( P |`s B ) ) C_ C |
12 | 10 11 | eqsstrdi | |- ( ph -> B C_ C ) |
13 | 12 8 | sseldd | |- ( ph -> F e. C ) |