Metamath Proof Explorer


Theorem mplsubrgcl

Description: An element of a polynomial algebra over a subring is an element of the polynomial algebra. (Contributed by SN, 9-Feb-2025)

Ref Expression
Hypotheses mplsubrgcl.w
|- W = ( I mPoly U )
mplsubrgcl.u
|- U = ( S |`s R )
mplsubrgcl.b
|- B = ( Base ` W )
mplsubrgcl.p
|- P = ( I mPoly S )
mplsubrgcl.c
|- C = ( Base ` P )
mplsubrgcl.i
|- ( ph -> I e. V )
mplsubrgcl.r
|- ( ph -> R e. ( SubRing ` S ) )
mplsubrgcl.f
|- ( ph -> F e. B )
Assertion mplsubrgcl
|- ( ph -> F e. C )

Proof

Step Hyp Ref Expression
1 mplsubrgcl.w
 |-  W = ( I mPoly U )
2 mplsubrgcl.u
 |-  U = ( S |`s R )
3 mplsubrgcl.b
 |-  B = ( Base ` W )
4 mplsubrgcl.p
 |-  P = ( I mPoly S )
5 mplsubrgcl.c
 |-  C = ( Base ` P )
6 mplsubrgcl.i
 |-  ( ph -> I e. V )
7 mplsubrgcl.r
 |-  ( ph -> R e. ( SubRing ` S ) )
8 mplsubrgcl.f
 |-  ( ph -> F e. B )
9 eqid
 |-  ( P |`s B ) = ( P |`s B )
10 4 2 1 3 6 7 9 ressmplbas
 |-  ( ph -> B = ( Base ` ( P |`s B ) ) )
11 9 5 ressbasss
 |-  ( Base ` ( P |`s B ) ) C_ C
12 10 11 eqsstrdi
 |-  ( ph -> B C_ C )
13 12 8 sseldd
 |-  ( ph -> F e. C )