Metamath Proof Explorer


Theorem mplval2

Description: Self-referential expression for the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mplval2.p
|- P = ( I mPoly R )
mplval2.s
|- S = ( I mPwSer R )
mplval2.u
|- U = ( Base ` P )
Assertion mplval2
|- P = ( S |`s U )

Proof

Step Hyp Ref Expression
1 mplval2.p
 |-  P = ( I mPoly R )
2 mplval2.s
 |-  S = ( I mPwSer R )
3 mplval2.u
 |-  U = ( Base ` P )
4 eqid
 |-  ( Base ` S ) = ( Base ` S )
5 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
6 1 2 4 5 3 mplbas
 |-  U = { f e. ( Base ` S ) | f finSupp ( 0g ` R ) }
7 1 2 4 5 6 mplval
 |-  P = ( S |`s U )