Metamath Proof Explorer


Theorem mplvsca2

Description: The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mplvsca2.p
|- P = ( I mPoly R )
mplvsca2.s
|- S = ( I mPwSer R )
mplvsca2.n
|- .x. = ( .s ` P )
Assertion mplvsca2
|- .x. = ( .s ` S )

Proof

Step Hyp Ref Expression
1 mplvsca2.p
 |-  P = ( I mPoly R )
2 mplvsca2.s
 |-  S = ( I mPwSer R )
3 mplvsca2.n
 |-  .x. = ( .s ` P )
4 fvex
 |-  ( Base ` P ) e. _V
5 eqid
 |-  ( Base ` P ) = ( Base ` P )
6 1 2 5 mplval2
 |-  P = ( S |`s ( Base ` P ) )
7 eqid
 |-  ( .s ` S ) = ( .s ` S )
8 6 7 ressvsca
 |-  ( ( Base ` P ) e. _V -> ( .s ` S ) = ( .s ` P ) )
9 4 8 ax-mp
 |-  ( .s ` S ) = ( .s ` P )
10 3 9 eqtr4i
 |-  .x. = ( .s ` S )