Metamath Proof Explorer


Theorem mplvscaval

Description: The scalar multiplication operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mplvsca.p
|- P = ( I mPoly R )
mplvsca.n
|- .xb = ( .s ` P )
mplvsca.k
|- K = ( Base ` R )
mplvsca.b
|- B = ( Base ` P )
mplvsca.m
|- .x. = ( .r ` R )
mplvsca.d
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
mplvsca.x
|- ( ph -> X e. K )
mplvsca.f
|- ( ph -> F e. B )
mplvscaval.y
|- ( ph -> Y e. D )
Assertion mplvscaval
|- ( ph -> ( ( X .xb F ) ` Y ) = ( X .x. ( F ` Y ) ) )

Proof

Step Hyp Ref Expression
1 mplvsca.p
 |-  P = ( I mPoly R )
2 mplvsca.n
 |-  .xb = ( .s ` P )
3 mplvsca.k
 |-  K = ( Base ` R )
4 mplvsca.b
 |-  B = ( Base ` P )
5 mplvsca.m
 |-  .x. = ( .r ` R )
6 mplvsca.d
 |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin }
7 mplvsca.x
 |-  ( ph -> X e. K )
8 mplvsca.f
 |-  ( ph -> F e. B )
9 mplvscaval.y
 |-  ( ph -> Y e. D )
10 1 2 3 4 5 6 7 8 mplvsca
 |-  ( ph -> ( X .xb F ) = ( ( D X. { X } ) oF .x. F ) )
11 10 fveq1d
 |-  ( ph -> ( ( X .xb F ) ` Y ) = ( ( ( D X. { X } ) oF .x. F ) ` Y ) )
12 ovex
 |-  ( NN0 ^m I ) e. _V
13 6 12 rabex2
 |-  D e. _V
14 13 a1i
 |-  ( ph -> D e. _V )
15 eqid
 |-  ( Base ` R ) = ( Base ` R )
16 1 15 4 6 8 mplelf
 |-  ( ph -> F : D --> ( Base ` R ) )
17 16 ffnd
 |-  ( ph -> F Fn D )
18 eqidd
 |-  ( ( ph /\ Y e. D ) -> ( F ` Y ) = ( F ` Y ) )
19 14 7 17 18 ofc1
 |-  ( ( ph /\ Y e. D ) -> ( ( ( D X. { X } ) oF .x. F ) ` Y ) = ( X .x. ( F ` Y ) ) )
20 9 19 mpdan
 |-  ( ph -> ( ( ( D X. { X } ) oF .x. F ) ` Y ) = ( X .x. ( F ` Y ) ) )
21 11 20 eqtrd
 |-  ( ph -> ( ( X .xb F ) ` Y ) = ( X .x. ( F ` Y ) ) )