| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mply1topmat.a | 
							 |-  A = ( N Mat R )  | 
						
						
							| 2 | 
							
								
							 | 
							mply1topmat.q | 
							 |-  Q = ( Poly1 ` A )  | 
						
						
							| 3 | 
							
								
							 | 
							mply1topmat.l | 
							 |-  L = ( Base ` Q )  | 
						
						
							| 4 | 
							
								
							 | 
							mply1topmat.p | 
							 |-  P = ( Poly1 ` R )  | 
						
						
							| 5 | 
							
								
							 | 
							mply1topmat.m | 
							 |-  .x. = ( .s ` P )  | 
						
						
							| 6 | 
							
								
							 | 
							mply1topmat.e | 
							 |-  E = ( .g ` ( mulGrp ` P ) )  | 
						
						
							| 7 | 
							
								
							 | 
							mply1topmat.y | 
							 |-  Y = ( var1 ` R )  | 
						
						
							| 8 | 
							
								
							 | 
							mply1topmat.i | 
							 |-  I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fveq2 | 
							 |-  ( p = O -> ( coe1 ` p ) = ( coe1 ` O ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							fveq1d | 
							 |-  ( p = O -> ( ( coe1 ` p ) ` k ) = ( ( coe1 ` O ) ` k ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							oveqd | 
							 |-  ( p = O -> ( i ( ( coe1 ` p ) ` k ) j ) = ( i ( ( coe1 ` O ) ` k ) j ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							oveq1d | 
							 |-  ( p = O -> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) = ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							mpteq2dv | 
							 |-  ( p = O -> ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) = ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq2d | 
							 |-  ( p = O -> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) = ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							mpoeq3dv | 
							 |-  ( p = O -> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) = ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simpr | 
							 |-  ( ( N e. V /\ O e. L ) -> O e. L )  | 
						
						
							| 17 | 
							
								
							 | 
							simpl | 
							 |-  ( ( N e. V /\ O e. L ) -> N e. V )  | 
						
						
							| 18 | 
							
								
							 | 
							mpoexga | 
							 |-  ( ( N e. V /\ N e. V ) -> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) e. _V )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							syldan | 
							 |-  ( ( N e. V /\ O e. L ) -> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) e. _V )  | 
						
						
							| 20 | 
							
								8 15 16 19
							 | 
							fvmptd3 | 
							 |-  ( ( N e. V /\ O e. L ) -> ( I ` O ) = ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) )  |