Step |
Hyp |
Ref |
Expression |
1 |
|
mply1topmat.a |
|- A = ( N Mat R ) |
2 |
|
mply1topmat.q |
|- Q = ( Poly1 ` A ) |
3 |
|
mply1topmat.l |
|- L = ( Base ` Q ) |
4 |
|
mply1topmat.p |
|- P = ( Poly1 ` R ) |
5 |
|
mply1topmat.m |
|- .x. = ( .s ` P ) |
6 |
|
mply1topmat.e |
|- E = ( .g ` ( mulGrp ` P ) ) |
7 |
|
mply1topmat.y |
|- Y = ( var1 ` R ) |
8 |
|
mply1topmat.i |
|- I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) |
9 |
|
fveq2 |
|- ( p = O -> ( coe1 ` p ) = ( coe1 ` O ) ) |
10 |
9
|
fveq1d |
|- ( p = O -> ( ( coe1 ` p ) ` k ) = ( ( coe1 ` O ) ` k ) ) |
11 |
10
|
oveqd |
|- ( p = O -> ( i ( ( coe1 ` p ) ` k ) j ) = ( i ( ( coe1 ` O ) ` k ) j ) ) |
12 |
11
|
oveq1d |
|- ( p = O -> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) = ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) |
13 |
12
|
mpteq2dv |
|- ( p = O -> ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) = ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) |
14 |
13
|
oveq2d |
|- ( p = O -> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) = ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) |
15 |
14
|
mpoeq3dv |
|- ( p = O -> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) = ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) |
16 |
|
simpr |
|- ( ( N e. V /\ O e. L ) -> O e. L ) |
17 |
|
simpl |
|- ( ( N e. V /\ O e. L ) -> N e. V ) |
18 |
|
mpoexga |
|- ( ( N e. V /\ N e. V ) -> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) e. _V ) |
19 |
17 18
|
syldan |
|- ( ( N e. V /\ O e. L ) -> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) e. _V ) |
20 |
8 15 16 19
|
fvmptd3 |
|- ( ( N e. V /\ O e. L ) -> ( I ` O ) = ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` O ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) |