Metamath Proof Explorer


Theorem mpo0v

Description: A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015) (Revised by Mario Carneiro, 15-May-2015) (Proof shortened by AV, 27-Jan-2024)

Ref Expression
Assertion mpo0v
|- ( x e. (/) , y e. B |-> C ) = (/)

Proof

Step Hyp Ref Expression
1 eqid
 |-  (/) = (/)
2 1 orci
 |-  ( (/) = (/) \/ B = (/) )
3 0mpo0
 |-  ( ( (/) = (/) \/ B = (/) ) -> ( x e. (/) , y e. B |-> C ) = (/) )
4 2 3 ax-mp
 |-  ( x e. (/) , y e. B |-> C ) = (/)