Metamath Proof Explorer


Theorem mpoaddex

Description: The addition operation is a set. Version of addex using maps-to notation , which does not require ax-addf . (Contributed by GG, 31-Mar-2025)

Ref Expression
Assertion mpoaddex
|- ( x e. CC , y e. CC |-> ( x + y ) ) e. _V

Proof

Step Hyp Ref Expression
1 mpoaddf
 |-  ( x e. CC , y e. CC |-> ( x + y ) ) : ( CC X. CC ) --> CC
2 cnex
 |-  CC e. _V
3 2 2 xpex
 |-  ( CC X. CC ) e. _V
4 fex2
 |-  ( ( ( x e. CC , y e. CC |-> ( x + y ) ) : ( CC X. CC ) --> CC /\ ( CC X. CC ) e. _V /\ CC e. _V ) -> ( x e. CC , y e. CC |-> ( x + y ) ) e. _V )
5 1 3 2 4 mp3an
 |-  ( x e. CC , y e. CC |-> ( x + y ) ) e. _V