| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mpoaddex |
|- ( x e. CC , y e. CC |-> ( x + y ) ) e. _V |
| 2 |
|
cnfldstr |
|- CCfld Struct <. 1 , ; 1 3 >. |
| 3 |
|
plusgid |
|- +g = Slot ( +g ` ndx ) |
| 4 |
|
snsstp2 |
|- { <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. } C_ { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } |
| 5 |
|
ssun1 |
|- { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } C_ ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) |
| 6 |
|
ssun1 |
|- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) C_ ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
| 7 |
|
df-cnfld |
|- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
| 8 |
6 7
|
sseqtrri |
|- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) C_ CCfld |
| 9 |
5 8
|
sstri |
|- { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } C_ CCfld |
| 10 |
4 9
|
sstri |
|- { <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. } C_ CCfld |
| 11 |
2 3 10
|
strfv |
|- ( ( x e. CC , y e. CC |-> ( x + y ) ) e. _V -> ( x e. CC , y e. CC |-> ( x + y ) ) = ( +g ` CCfld ) ) |
| 12 |
1 11
|
ax-mp |
|- ( x e. CC , y e. CC |-> ( x + y ) ) = ( +g ` CCfld ) |