Step |
Hyp |
Ref |
Expression |
1 |
|
mpocurryd.f |
|- F = ( x e. X , y e. Y |-> C ) |
2 |
|
mpocurryd.c |
|- ( ph -> A. x e. X A. y e. Y C e. V ) |
3 |
|
mpocurryd.n |
|- ( ph -> Y =/= (/) ) |
4 |
|
mpocurryvald.y |
|- ( ph -> Y e. W ) |
5 |
|
mpocurryvald.a |
|- ( ph -> A e. X ) |
6 |
1 2 3
|
mpocurryd |
|- ( ph -> curry F = ( x e. X |-> ( y e. Y |-> C ) ) ) |
7 |
|
nfcv |
|- F/_ a ( y e. Y |-> C ) |
8 |
|
nfcv |
|- F/_ x Y |
9 |
|
nfcsb1v |
|- F/_ x [_ a / x ]_ C |
10 |
8 9
|
nfmpt |
|- F/_ x ( y e. Y |-> [_ a / x ]_ C ) |
11 |
|
csbeq1a |
|- ( x = a -> C = [_ a / x ]_ C ) |
12 |
11
|
mpteq2dv |
|- ( x = a -> ( y e. Y |-> C ) = ( y e. Y |-> [_ a / x ]_ C ) ) |
13 |
7 10 12
|
cbvmpt |
|- ( x e. X |-> ( y e. Y |-> C ) ) = ( a e. X |-> ( y e. Y |-> [_ a / x ]_ C ) ) |
14 |
6 13
|
eqtrdi |
|- ( ph -> curry F = ( a e. X |-> ( y e. Y |-> [_ a / x ]_ C ) ) ) |
15 |
|
csbeq1 |
|- ( a = A -> [_ a / x ]_ C = [_ A / x ]_ C ) |
16 |
15
|
adantl |
|- ( ( ph /\ a = A ) -> [_ a / x ]_ C = [_ A / x ]_ C ) |
17 |
16
|
mpteq2dv |
|- ( ( ph /\ a = A ) -> ( y e. Y |-> [_ a / x ]_ C ) = ( y e. Y |-> [_ A / x ]_ C ) ) |
18 |
4
|
mptexd |
|- ( ph -> ( y e. Y |-> [_ A / x ]_ C ) e. _V ) |
19 |
14 17 5 18
|
fvmptd |
|- ( ph -> ( curry F ` A ) = ( y e. Y |-> [_ A / x ]_ C ) ) |