Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | mpodifsnif | |- ( i e. ( A \ { X } ) , j e. B |-> if ( i = X , C , D ) ) = ( i e. ( A \ { X } ) , j e. B |-> D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsnneq | |- ( i e. ( A \ { X } ) -> -. i = X ) |
|
2 | 1 | adantr | |- ( ( i e. ( A \ { X } ) /\ j e. B ) -> -. i = X ) |
3 | 2 | iffalsed | |- ( ( i e. ( A \ { X } ) /\ j e. B ) -> if ( i = X , C , D ) = D ) |
4 | 3 | mpoeq3ia | |- ( i e. ( A \ { X } ) , j e. B |-> if ( i = X , C , D ) ) = ( i e. ( A \ { X } ) , j e. B |-> D ) |