Metamath Proof Explorer


Theorem mpodifsnif

Description: A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019)

Ref Expression
Assertion mpodifsnif
|- ( i e. ( A \ { X } ) , j e. B |-> if ( i = X , C , D ) ) = ( i e. ( A \ { X } ) , j e. B |-> D )

Proof

Step Hyp Ref Expression
1 eldifsnneq
 |-  ( i e. ( A \ { X } ) -> -. i = X )
2 1 adantr
 |-  ( ( i e. ( A \ { X } ) /\ j e. B ) -> -. i = X )
3 2 iffalsed
 |-  ( ( i e. ( A \ { X } ) /\ j e. B ) -> if ( i = X , C , D ) = D )
4 3 mpoeq3ia
 |-  ( i e. ( A \ { X } ) , j e. B |-> if ( i = X , C , D ) ) = ( i e. ( A \ { X } ) , j e. B |-> D )