Metamath Proof Explorer


Theorem mpoeq12

Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013)

Ref Expression
Assertion mpoeq12
|- ( ( A = C /\ B = D ) -> ( x e. A , y e. B |-> E ) = ( x e. C , y e. D |-> E ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  E = E
2 1 rgenw
 |-  A. y e. B E = E
3 2 jctr
 |-  ( B = D -> ( B = D /\ A. y e. B E = E ) )
4 3 ralrimivw
 |-  ( B = D -> A. x e. A ( B = D /\ A. y e. B E = E ) )
5 mpoeq123
 |-  ( ( A = C /\ A. x e. A ( B = D /\ A. y e. B E = E ) ) -> ( x e. A , y e. B |-> E ) = ( x e. C , y e. D |-> E ) )
6 4 5 sylan2
 |-  ( ( A = C /\ B = D ) -> ( x e. A , y e. B |-> E ) = ( x e. C , y e. D |-> E ) )