Metamath Proof Explorer


Theorem mpoeq123i

Description: An equality inference for the maps-to notation. (Contributed by NM, 15-Jul-2013)

Ref Expression
Hypotheses mpoeq123i.1
|- A = D
mpoeq123i.2
|- B = E
mpoeq123i.3
|- C = F
Assertion mpoeq123i
|- ( x e. A , y e. B |-> C ) = ( x e. D , y e. E |-> F )

Proof

Step Hyp Ref Expression
1 mpoeq123i.1
 |-  A = D
2 mpoeq123i.2
 |-  B = E
3 mpoeq123i.3
 |-  C = F
4 1 a1i
 |-  ( T. -> A = D )
5 2 a1i
 |-  ( T. -> B = E )
6 3 a1i
 |-  ( T. -> C = F )
7 4 5 6 mpoeq123dv
 |-  ( T. -> ( x e. A , y e. B |-> C ) = ( x e. D , y e. E |-> F ) )
8 7 mptru
 |-  ( x e. A , y e. B |-> C ) = ( x e. D , y e. E |-> F )