Metamath Proof Explorer


Theorem mpoeq3dv

Description: An equality deduction for the maps-to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018)

Ref Expression
Hypothesis mpoeq3dv.1
|- ( ph -> C = D )
Assertion mpoeq3dv
|- ( ph -> ( x e. A , y e. B |-> C ) = ( x e. A , y e. B |-> D ) )

Proof

Step Hyp Ref Expression
1 mpoeq3dv.1
 |-  ( ph -> C = D )
2 1 3ad2ant1
 |-  ( ( ph /\ x e. A /\ y e. B ) -> C = D )
3 2 mpoeq3dva
 |-  ( ph -> ( x e. A , y e. B |-> C ) = ( x e. A , y e. B |-> D ) )