Metamath Proof Explorer


Theorem mpoeq3ia

Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013)

Ref Expression
Hypothesis mpoeq3ia.1
|- ( ( x e. A /\ y e. B ) -> C = D )
Assertion mpoeq3ia
|- ( x e. A , y e. B |-> C ) = ( x e. A , y e. B |-> D )

Proof

Step Hyp Ref Expression
1 mpoeq3ia.1
 |-  ( ( x e. A /\ y e. B ) -> C = D )
2 1 3adant1
 |-  ( ( T. /\ x e. A /\ y e. B ) -> C = D )
3 2 mpoeq3dva
 |-  ( T. -> ( x e. A , y e. B |-> C ) = ( x e. A , y e. B |-> D ) )
4 3 mptru
 |-  ( x e. A , y e. B |-> C ) = ( x e. A , y e. B |-> D )