Metamath Proof Explorer


Theorem mpoexg

Description: Existence of an operation class abstraction (special case). (Contributed by FL, 17-May-2010) (Revised by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypothesis mpoexg.1
|- F = ( x e. A , y e. B |-> C )
Assertion mpoexg
|- ( ( A e. R /\ B e. S ) -> F e. _V )

Proof

Step Hyp Ref Expression
1 mpoexg.1
 |-  F = ( x e. A , y e. B |-> C )
2 elex
 |-  ( B e. S -> B e. _V )
3 elex
 |-  ( B e. _V -> B e. _V )
4 3 ralrimivw
 |-  ( B e. _V -> A. x e. A B e. _V )
5 2 4 syl
 |-  ( B e. S -> A. x e. A B e. _V )
6 1 mpoexxg
 |-  ( ( A e. R /\ A. x e. A B e. _V ) -> F e. _V )
7 5 6 sylan2
 |-  ( ( A e. R /\ B e. S ) -> F e. _V )