Metamath Proof Explorer


Theorem mpofrlmd

Description: Elements of the free module are mappings with two arguments defined by their operation values. (Contributed by AV, 20-Feb-2019) (Proof shortened by AV, 3-Jul-2022)

Ref Expression
Hypotheses mpofrlmd.f
|- F = ( R freeLMod ( N X. M ) )
mpofrlmd.v
|- V = ( Base ` F )
mpofrlmd.s
|- ( ( i = a /\ j = b ) -> A = B )
mpofrlmd.a
|- ( ( ph /\ i e. N /\ j e. M ) -> A e. X )
mpofrlmd.b
|- ( ( ph /\ a e. N /\ b e. M ) -> B e. Y )
mpofrlmd.e
|- ( ph -> ( N e. U /\ M e. W /\ Z e. V ) )
Assertion mpofrlmd
|- ( ph -> ( Z = ( a e. N , b e. M |-> B ) <-> A. i e. N A. j e. M ( i Z j ) = A ) )

Proof

Step Hyp Ref Expression
1 mpofrlmd.f
 |-  F = ( R freeLMod ( N X. M ) )
2 mpofrlmd.v
 |-  V = ( Base ` F )
3 mpofrlmd.s
 |-  ( ( i = a /\ j = b ) -> A = B )
4 mpofrlmd.a
 |-  ( ( ph /\ i e. N /\ j e. M ) -> A e. X )
5 mpofrlmd.b
 |-  ( ( ph /\ a e. N /\ b e. M ) -> B e. Y )
6 mpofrlmd.e
 |-  ( ph -> ( N e. U /\ M e. W /\ Z e. V ) )
7 xpexg
 |-  ( ( N e. U /\ M e. W ) -> ( N X. M ) e. _V )
8 7 anim1i
 |-  ( ( ( N e. U /\ M e. W ) /\ Z e. V ) -> ( ( N X. M ) e. _V /\ Z e. V ) )
9 8 3impa
 |-  ( ( N e. U /\ M e. W /\ Z e. V ) -> ( ( N X. M ) e. _V /\ Z e. V ) )
10 6 9 syl
 |-  ( ph -> ( ( N X. M ) e. _V /\ Z e. V ) )
11 eqid
 |-  ( Base ` R ) = ( Base ` R )
12 1 11 2 frlmbasf
 |-  ( ( ( N X. M ) e. _V /\ Z e. V ) -> Z : ( N X. M ) --> ( Base ` R ) )
13 ffn
 |-  ( Z : ( N X. M ) --> ( Base ` R ) -> Z Fn ( N X. M ) )
14 10 12 13 3syl
 |-  ( ph -> Z Fn ( N X. M ) )
15 14 3 4 5 fnmpoovd
 |-  ( ph -> ( Z = ( a e. N , b e. M |-> B ) <-> A. i e. N A. j e. M ( i Z j ) = A ) )