Step |
Hyp |
Ref |
Expression |
1 |
|
mpofrlmd.f |
|- F = ( R freeLMod ( N X. M ) ) |
2 |
|
mpofrlmd.v |
|- V = ( Base ` F ) |
3 |
|
mpofrlmd.s |
|- ( ( i = a /\ j = b ) -> A = B ) |
4 |
|
mpofrlmd.a |
|- ( ( ph /\ i e. N /\ j e. M ) -> A e. X ) |
5 |
|
mpofrlmd.b |
|- ( ( ph /\ a e. N /\ b e. M ) -> B e. Y ) |
6 |
|
mpofrlmd.e |
|- ( ph -> ( N e. U /\ M e. W /\ Z e. V ) ) |
7 |
|
xpexg |
|- ( ( N e. U /\ M e. W ) -> ( N X. M ) e. _V ) |
8 |
7
|
anim1i |
|- ( ( ( N e. U /\ M e. W ) /\ Z e. V ) -> ( ( N X. M ) e. _V /\ Z e. V ) ) |
9 |
8
|
3impa |
|- ( ( N e. U /\ M e. W /\ Z e. V ) -> ( ( N X. M ) e. _V /\ Z e. V ) ) |
10 |
6 9
|
syl |
|- ( ph -> ( ( N X. M ) e. _V /\ Z e. V ) ) |
11 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
12 |
1 11 2
|
frlmbasf |
|- ( ( ( N X. M ) e. _V /\ Z e. V ) -> Z : ( N X. M ) --> ( Base ` R ) ) |
13 |
|
ffn |
|- ( Z : ( N X. M ) --> ( Base ` R ) -> Z Fn ( N X. M ) ) |
14 |
10 12 13
|
3syl |
|- ( ph -> Z Fn ( N X. M ) ) |
15 |
14 3 4 5
|
fnmpoovd |
|- ( ph -> ( Z = ( a e. N , b e. M |-> B ) <-> A. i e. N A. j e. M ( i Z j ) = A ) ) |