Metamath Proof Explorer


Theorem mpompt

Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013) (Revised by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypothesis mpompt.1
|- ( z = <. x , y >. -> C = D )
Assertion mpompt
|- ( z e. ( A X. B ) |-> C ) = ( x e. A , y e. B |-> D )

Proof

Step Hyp Ref Expression
1 mpompt.1
 |-  ( z = <. x , y >. -> C = D )
2 iunxpconst
 |-  U_ x e. A ( { x } X. B ) = ( A X. B )
3 2 mpteq1i
 |-  ( z e. U_ x e. A ( { x } X. B ) |-> C ) = ( z e. ( A X. B ) |-> C )
4 1 mpomptx
 |-  ( z e. U_ x e. A ( { x } X. B ) |-> C ) = ( x e. A , y e. B |-> D )
5 3 4 eqtr3i
 |-  ( z e. ( A X. B ) |-> C ) = ( x e. A , y e. B |-> D )