Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013) (Revised by Mario Carneiro, 29-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mpompt.1 | |- ( z = <. x , y >. -> C = D ) |
|
Assertion | mpompt | |- ( z e. ( A X. B ) |-> C ) = ( x e. A , y e. B |-> D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpompt.1 | |- ( z = <. x , y >. -> C = D ) |
|
2 | iunxpconst | |- U_ x e. A ( { x } X. B ) = ( A X. B ) |
|
3 | 2 | mpteq1i | |- ( z e. U_ x e. A ( { x } X. B ) |-> C ) = ( z e. ( A X. B ) |-> C ) |
4 | 1 | mpomptx | |- ( z e. U_ x e. A ( { x } X. B ) |-> C ) = ( x e. A , y e. B |-> D ) |
5 | 3 4 | eqtr3i | |- ( z e. ( A X. B ) |-> C ) = ( x e. A , y e. B |-> D ) |