Metamath Proof Explorer


Theorem mpompts

Description: Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 24-Sep-2015)

Ref Expression
Assertion mpompts
|- ( x e. A , y e. B |-> C ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C )

Proof

Step Hyp Ref Expression
1 mpomptsx
 |-  ( x e. A , y e. B |-> C ) = ( z e. U_ x e. A ( { x } X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C )
2 iunxpconst
 |-  U_ x e. A ( { x } X. B ) = ( A X. B )
3 2 mpteq1i
 |-  ( z e. U_ x e. A ( { x } X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C )
4 1 3 eqtri
 |-  ( x e. A , y e. B |-> C ) = ( z e. ( A X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C )