Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|- u e. _V |
2 |
|
vex |
|- v e. _V |
3 |
1 2
|
op1std |
|- ( z = <. u , v >. -> ( 1st ` z ) = u ) |
4 |
3
|
csbeq1d |
|- ( z = <. u , v >. -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C = [_ u / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |
5 |
1 2
|
op2ndd |
|- ( z = <. u , v >. -> ( 2nd ` z ) = v ) |
6 |
5
|
csbeq1d |
|- ( z = <. u , v >. -> [_ ( 2nd ` z ) / y ]_ C = [_ v / y ]_ C ) |
7 |
6
|
csbeq2dv |
|- ( z = <. u , v >. -> [_ u / x ]_ [_ ( 2nd ` z ) / y ]_ C = [_ u / x ]_ [_ v / y ]_ C ) |
8 |
4 7
|
eqtrd |
|- ( z = <. u , v >. -> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C = [_ u / x ]_ [_ v / y ]_ C ) |
9 |
8
|
mpomptx |
|- ( z e. U_ u e. A ( { u } X. [_ u / x ]_ B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) = ( u e. A , v e. [_ u / x ]_ B |-> [_ u / x ]_ [_ v / y ]_ C ) |
10 |
|
nfcv |
|- F/_ u ( { x } X. B ) |
11 |
|
nfcv |
|- F/_ x { u } |
12 |
|
nfcsb1v |
|- F/_ x [_ u / x ]_ B |
13 |
11 12
|
nfxp |
|- F/_ x ( { u } X. [_ u / x ]_ B ) |
14 |
|
sneq |
|- ( x = u -> { x } = { u } ) |
15 |
|
csbeq1a |
|- ( x = u -> B = [_ u / x ]_ B ) |
16 |
14 15
|
xpeq12d |
|- ( x = u -> ( { x } X. B ) = ( { u } X. [_ u / x ]_ B ) ) |
17 |
10 13 16
|
cbviun |
|- U_ x e. A ( { x } X. B ) = U_ u e. A ( { u } X. [_ u / x ]_ B ) |
18 |
17
|
mpteq1i |
|- ( z e. U_ x e. A ( { x } X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) = ( z e. U_ u e. A ( { u } X. [_ u / x ]_ B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |
19 |
|
nfcv |
|- F/_ u B |
20 |
|
nfcv |
|- F/_ u C |
21 |
|
nfcv |
|- F/_ v C |
22 |
|
nfcsb1v |
|- F/_ x [_ u / x ]_ [_ v / y ]_ C |
23 |
|
nfcv |
|- F/_ y u |
24 |
|
nfcsb1v |
|- F/_ y [_ v / y ]_ C |
25 |
23 24
|
nfcsbw |
|- F/_ y [_ u / x ]_ [_ v / y ]_ C |
26 |
|
csbeq1a |
|- ( y = v -> C = [_ v / y ]_ C ) |
27 |
|
csbeq1a |
|- ( x = u -> [_ v / y ]_ C = [_ u / x ]_ [_ v / y ]_ C ) |
28 |
26 27
|
sylan9eqr |
|- ( ( x = u /\ y = v ) -> C = [_ u / x ]_ [_ v / y ]_ C ) |
29 |
19 12 20 21 22 25 15 28
|
cbvmpox |
|- ( x e. A , y e. B |-> C ) = ( u e. A , v e. [_ u / x ]_ B |-> [_ u / x ]_ [_ v / y ]_ C ) |
30 |
9 18 29
|
3eqtr4ri |
|- ( x e. A , y e. B |-> C ) = ( z e. U_ x e. A ( { x } X. B ) |-> [_ ( 1st ` z ) / x ]_ [_ ( 2nd ` z ) / y ]_ C ) |