Metamath Proof Explorer


Theorem mpomulex

Description: The multiplication operation is a set. Version of mulex using maps-to notation , which does not require ax-mulf . (Contributed by GG, 16-Mar-2025)

Ref Expression
Assertion mpomulex
|- ( x e. CC , y e. CC |-> ( x x. y ) ) e. _V

Proof

Step Hyp Ref Expression
1 mpomulf
 |-  ( x e. CC , y e. CC |-> ( x x. y ) ) : ( CC X. CC ) --> CC
2 cnex
 |-  CC e. _V
3 2 2 xpex
 |-  ( CC X. CC ) e. _V
4 fex2
 |-  ( ( ( x e. CC , y e. CC |-> ( x x. y ) ) : ( CC X. CC ) --> CC /\ ( CC X. CC ) e. _V /\ CC e. _V ) -> ( x e. CC , y e. CC |-> ( x x. y ) ) e. _V )
5 1 3 2 4 mp3an
 |-  ( x e. CC , y e. CC |-> ( x x. y ) ) e. _V