Step |
Hyp |
Ref |
Expression |
1 |
|
mposn.f |
|- F = ( x e. { A } , y e. { B } |-> C ) |
2 |
|
mposn.a |
|- ( x = A -> C = D ) |
3 |
|
mposn.b |
|- ( y = B -> D = E ) |
4 |
|
xpsng |
|- ( ( A e. V /\ B e. W ) -> ( { A } X. { B } ) = { <. A , B >. } ) |
5 |
4
|
3adant3 |
|- ( ( A e. V /\ B e. W /\ E e. U ) -> ( { A } X. { B } ) = { <. A , B >. } ) |
6 |
5
|
mpteq1d |
|- ( ( A e. V /\ B e. W /\ E e. U ) -> ( p e. ( { A } X. { B } ) |-> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C ) = ( p e. { <. A , B >. } |-> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C ) ) |
7 |
|
mpompts |
|- ( x e. { A } , y e. { B } |-> C ) = ( p e. ( { A } X. { B } ) |-> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C ) |
8 |
1 7
|
eqtri |
|- F = ( p e. ( { A } X. { B } ) |-> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C ) |
9 |
8
|
a1i |
|- ( ( A e. V /\ B e. W /\ E e. U ) -> F = ( p e. ( { A } X. { B } ) |-> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C ) ) |
10 |
|
op2ndg |
|- ( ( A e. V /\ B e. W ) -> ( 2nd ` <. A , B >. ) = B ) |
11 |
|
fveq2 |
|- ( p = <. A , B >. -> ( 2nd ` p ) = ( 2nd ` <. A , B >. ) ) |
12 |
11
|
eqcomd |
|- ( p = <. A , B >. -> ( 2nd ` <. A , B >. ) = ( 2nd ` p ) ) |
13 |
12
|
eqeq1d |
|- ( p = <. A , B >. -> ( ( 2nd ` <. A , B >. ) = B <-> ( 2nd ` p ) = B ) ) |
14 |
10 13
|
syl5ibcom |
|- ( ( A e. V /\ B e. W ) -> ( p = <. A , B >. -> ( 2nd ` p ) = B ) ) |
15 |
14
|
3adant3 |
|- ( ( A e. V /\ B e. W /\ E e. U ) -> ( p = <. A , B >. -> ( 2nd ` p ) = B ) ) |
16 |
15
|
imp |
|- ( ( ( A e. V /\ B e. W /\ E e. U ) /\ p = <. A , B >. ) -> ( 2nd ` p ) = B ) |
17 |
|
op1stg |
|- ( ( A e. V /\ B e. W ) -> ( 1st ` <. A , B >. ) = A ) |
18 |
|
fveq2 |
|- ( p = <. A , B >. -> ( 1st ` p ) = ( 1st ` <. A , B >. ) ) |
19 |
18
|
eqcomd |
|- ( p = <. A , B >. -> ( 1st ` <. A , B >. ) = ( 1st ` p ) ) |
20 |
19
|
eqeq1d |
|- ( p = <. A , B >. -> ( ( 1st ` <. A , B >. ) = A <-> ( 1st ` p ) = A ) ) |
21 |
17 20
|
syl5ibcom |
|- ( ( A e. V /\ B e. W ) -> ( p = <. A , B >. -> ( 1st ` p ) = A ) ) |
22 |
21
|
3adant3 |
|- ( ( A e. V /\ B e. W /\ E e. U ) -> ( p = <. A , B >. -> ( 1st ` p ) = A ) ) |
23 |
22
|
imp |
|- ( ( ( A e. V /\ B e. W /\ E e. U ) /\ p = <. A , B >. ) -> ( 1st ` p ) = A ) |
24 |
|
simp1 |
|- ( ( A e. V /\ B e. W /\ E e. U ) -> A e. V ) |
25 |
|
simpl2 |
|- ( ( ( A e. V /\ B e. W /\ E e. U ) /\ x = A ) -> B e. W ) |
26 |
2
|
adantl |
|- ( ( ( A e. V /\ B e. W /\ E e. U ) /\ x = A ) -> C = D ) |
27 |
26 3
|
sylan9eq |
|- ( ( ( ( A e. V /\ B e. W /\ E e. U ) /\ x = A ) /\ y = B ) -> C = E ) |
28 |
25 27
|
csbied |
|- ( ( ( A e. V /\ B e. W /\ E e. U ) /\ x = A ) -> [_ B / y ]_ C = E ) |
29 |
24 28
|
csbied |
|- ( ( A e. V /\ B e. W /\ E e. U ) -> [_ A / x ]_ [_ B / y ]_ C = E ) |
30 |
29
|
adantr |
|- ( ( ( A e. V /\ B e. W /\ E e. U ) /\ p = <. A , B >. ) -> [_ A / x ]_ [_ B / y ]_ C = E ) |
31 |
|
csbeq1 |
|- ( ( 1st ` p ) = A -> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C = [_ A / x ]_ [_ ( 2nd ` p ) / y ]_ C ) |
32 |
31
|
eqeq1d |
|- ( ( 1st ` p ) = A -> ( [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C = E <-> [_ A / x ]_ [_ ( 2nd ` p ) / y ]_ C = E ) ) |
33 |
32
|
adantl |
|- ( ( ( 2nd ` p ) = B /\ ( 1st ` p ) = A ) -> ( [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C = E <-> [_ A / x ]_ [_ ( 2nd ` p ) / y ]_ C = E ) ) |
34 |
|
csbeq1 |
|- ( ( 2nd ` p ) = B -> [_ ( 2nd ` p ) / y ]_ C = [_ B / y ]_ C ) |
35 |
34
|
adantr |
|- ( ( ( 2nd ` p ) = B /\ ( 1st ` p ) = A ) -> [_ ( 2nd ` p ) / y ]_ C = [_ B / y ]_ C ) |
36 |
35
|
csbeq2dv |
|- ( ( ( 2nd ` p ) = B /\ ( 1st ` p ) = A ) -> [_ A / x ]_ [_ ( 2nd ` p ) / y ]_ C = [_ A / x ]_ [_ B / y ]_ C ) |
37 |
36
|
eqeq1d |
|- ( ( ( 2nd ` p ) = B /\ ( 1st ` p ) = A ) -> ( [_ A / x ]_ [_ ( 2nd ` p ) / y ]_ C = E <-> [_ A / x ]_ [_ B / y ]_ C = E ) ) |
38 |
33 37
|
bitrd |
|- ( ( ( 2nd ` p ) = B /\ ( 1st ` p ) = A ) -> ( [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C = E <-> [_ A / x ]_ [_ B / y ]_ C = E ) ) |
39 |
30 38
|
syl5ibrcom |
|- ( ( ( A e. V /\ B e. W /\ E e. U ) /\ p = <. A , B >. ) -> ( ( ( 2nd ` p ) = B /\ ( 1st ` p ) = A ) -> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C = E ) ) |
40 |
16 23 39
|
mp2and |
|- ( ( ( A e. V /\ B e. W /\ E e. U ) /\ p = <. A , B >. ) -> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C = E ) |
41 |
|
opex |
|- <. A , B >. e. _V |
42 |
41
|
a1i |
|- ( ( A e. V /\ B e. W /\ E e. U ) -> <. A , B >. e. _V ) |
43 |
|
simp3 |
|- ( ( A e. V /\ B e. W /\ E e. U ) -> E e. U ) |
44 |
40 42 43
|
fmptsnd |
|- ( ( A e. V /\ B e. W /\ E e. U ) -> { <. <. A , B >. , E >. } = ( p e. { <. A , B >. } |-> [_ ( 1st ` p ) / x ]_ [_ ( 2nd ` p ) / y ]_ C ) ) |
45 |
6 9 44
|
3eqtr4d |
|- ( ( A e. V /\ B e. W /\ E e. U ) -> F = { <. <. A , B >. , E >. } ) |