Step |
Hyp |
Ref |
Expression |
1 |
|
mpoxeldm.f |
|- F = ( x e. C , y e. D |-> R ) |
2 |
1
|
dmmpossx |
|- dom F C_ U_ x e. C ( { x } X. D ) |
3 |
|
elfvdm |
|- ( N e. ( F ` <. X , Y >. ) -> <. X , Y >. e. dom F ) |
4 |
|
df-ov |
|- ( X F Y ) = ( F ` <. X , Y >. ) |
5 |
3 4
|
eleq2s |
|- ( N e. ( X F Y ) -> <. X , Y >. e. dom F ) |
6 |
2 5
|
sselid |
|- ( N e. ( X F Y ) -> <. X , Y >. e. U_ x e. C ( { x } X. D ) ) |
7 |
|
nfcsb1v |
|- F/_ x [_ X / x ]_ D |
8 |
|
csbeq1a |
|- ( x = X -> D = [_ X / x ]_ D ) |
9 |
7 8
|
opeliunxp2f |
|- ( <. X , Y >. e. U_ x e. C ( { x } X. D ) <-> ( X e. C /\ Y e. [_ X / x ]_ D ) ) |
10 |
6 9
|
sylib |
|- ( N e. ( X F Y ) -> ( X e. C /\ Y e. [_ X / x ]_ D ) ) |