Metamath Proof Explorer


Theorem mpoxeldm

Description: If there is an element of the value of an operation given by a maps-to rule, then the first argument is an element of the first component of the domain and the second argument is an element of the second component of the domain depending on the first argument. (Contributed by AV, 25-Oct-2020)

Ref Expression
Hypothesis mpoxeldm.f
|- F = ( x e. C , y e. D |-> R )
Assertion mpoxeldm
|- ( N e. ( X F Y ) -> ( X e. C /\ Y e. [_ X / x ]_ D ) )

Proof

Step Hyp Ref Expression
1 mpoxeldm.f
 |-  F = ( x e. C , y e. D |-> R )
2 1 dmmpossx
 |-  dom F C_ U_ x e. C ( { x } X. D )
3 elfvdm
 |-  ( N e. ( F ` <. X , Y >. ) -> <. X , Y >. e. dom F )
4 df-ov
 |-  ( X F Y ) = ( F ` <. X , Y >. )
5 3 4 eleq2s
 |-  ( N e. ( X F Y ) -> <. X , Y >. e. dom F )
6 2 5 sselid
 |-  ( N e. ( X F Y ) -> <. X , Y >. e. U_ x e. C ( { x } X. D ) )
7 nfcsb1v
 |-  F/_ x [_ X / x ]_ D
8 csbeq1a
 |-  ( x = X -> D = [_ X / x ]_ D )
9 7 8 opeliunxp2f
 |-  ( <. X , Y >. e. U_ x e. C ( { x } X. D ) <-> ( X e. C /\ Y e. [_ X / x ]_ D ) )
10 6 9 sylib
 |-  ( N e. ( X F Y ) -> ( X e. C /\ Y e. [_ X / x ]_ D ) )