| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mpoxeldm.f |  |-  F = ( x e. C , y e. D |-> R ) | 
						
							| 2 | 1 | dmmpossx |  |-  dom F C_ U_ x e. C ( { x } X. D ) | 
						
							| 3 |  | elfvdm |  |-  ( N e. ( F ` <. X , Y >. ) -> <. X , Y >. e. dom F ) | 
						
							| 4 |  | df-ov |  |-  ( X F Y ) = ( F ` <. X , Y >. ) | 
						
							| 5 | 3 4 | eleq2s |  |-  ( N e. ( X F Y ) -> <. X , Y >. e. dom F ) | 
						
							| 6 | 2 5 | sselid |  |-  ( N e. ( X F Y ) -> <. X , Y >. e. U_ x e. C ( { x } X. D ) ) | 
						
							| 7 |  | nfcsb1v |  |-  F/_ x [_ X / x ]_ D | 
						
							| 8 |  | csbeq1a |  |-  ( x = X -> D = [_ X / x ]_ D ) | 
						
							| 9 | 7 8 | opeliunxp2f |  |-  ( <. X , Y >. e. U_ x e. C ( { x } X. D ) <-> ( X e. C /\ Y e. [_ X / x ]_ D ) ) | 
						
							| 10 | 6 9 | sylib |  |-  ( N e. ( X F Y ) -> ( X e. C /\ Y e. [_ X / x ]_ D ) ) |