Step |
Hyp |
Ref |
Expression |
1 |
|
mpoxopn0yelv.f |
|- F = ( x e. _V , y e. ( 1st ` x ) |-> C ) |
2 |
1
|
dmmpossx |
|- dom F C_ U_ x e. _V ( { x } X. ( 1st ` x ) ) |
3 |
|
elfvdm |
|- ( N e. ( F ` <. <. V , W >. , K >. ) -> <. <. V , W >. , K >. e. dom F ) |
4 |
|
df-ov |
|- ( <. V , W >. F K ) = ( F ` <. <. V , W >. , K >. ) |
5 |
3 4
|
eleq2s |
|- ( N e. ( <. V , W >. F K ) -> <. <. V , W >. , K >. e. dom F ) |
6 |
2 5
|
sselid |
|- ( N e. ( <. V , W >. F K ) -> <. <. V , W >. , K >. e. U_ x e. _V ( { x } X. ( 1st ` x ) ) ) |
7 |
|
fveq2 |
|- ( x = <. V , W >. -> ( 1st ` x ) = ( 1st ` <. V , W >. ) ) |
8 |
7
|
opeliunxp2 |
|- ( <. <. V , W >. , K >. e. U_ x e. _V ( { x } X. ( 1st ` x ) ) <-> ( <. V , W >. e. _V /\ K e. ( 1st ` <. V , W >. ) ) ) |
9 |
8
|
simprbi |
|- ( <. <. V , W >. , K >. e. U_ x e. _V ( { x } X. ( 1st ` x ) ) -> K e. ( 1st ` <. V , W >. ) ) |
10 |
6 9
|
syl |
|- ( N e. ( <. V , W >. F K ) -> K e. ( 1st ` <. V , W >. ) ) |
11 |
|
op1stg |
|- ( ( V e. X /\ W e. Y ) -> ( 1st ` <. V , W >. ) = V ) |
12 |
11
|
eleq2d |
|- ( ( V e. X /\ W e. Y ) -> ( K e. ( 1st ` <. V , W >. ) <-> K e. V ) ) |
13 |
10 12
|
syl5ib |
|- ( ( V e. X /\ W e. Y ) -> ( N e. ( <. V , W >. F K ) -> K e. V ) ) |