Metamath Proof Explorer


Theorem mpoxopovel

Description: Element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument. (Contributed by Alexander van der Vekens and Mario Carneiro, 10-Oct-2017)

Ref Expression
Hypothesis mpoxopoveq.f
|- F = ( x e. _V , y e. ( 1st ` x ) |-> { n e. ( 1st ` x ) | ph } )
Assertion mpoxopovel
|- ( ( V e. X /\ W e. Y ) -> ( N e. ( <. V , W >. F K ) <-> ( K e. V /\ N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) ) )

Proof

Step Hyp Ref Expression
1 mpoxopoveq.f
 |-  F = ( x e. _V , y e. ( 1st ` x ) |-> { n e. ( 1st ` x ) | ph } )
2 1 mpoxopn0yelv
 |-  ( ( V e. X /\ W e. Y ) -> ( N e. ( <. V , W >. F K ) -> K e. V ) )
3 2 pm4.71rd
 |-  ( ( V e. X /\ W e. Y ) -> ( N e. ( <. V , W >. F K ) <-> ( K e. V /\ N e. ( <. V , W >. F K ) ) ) )
4 1 mpoxopoveq
 |-  ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } )
5 4 eleq2d
 |-  ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> ( N e. ( <. V , W >. F K ) <-> N e. { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) )
6 nfcv
 |-  F/_ n V
7 6 elrabsf
 |-  ( N e. { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } <-> ( N e. V /\ [. N / n ]. [. <. V , W >. / x ]. [. K / y ]. ph ) )
8 sbccom
 |-  ( [. N / n ]. [. <. V , W >. / x ]. [. K / y ]. ph <-> [. <. V , W >. / x ]. [. N / n ]. [. K / y ]. ph )
9 sbccom
 |-  ( [. N / n ]. [. K / y ]. ph <-> [. K / y ]. [. N / n ]. ph )
10 9 sbcbii
 |-  ( [. <. V , W >. / x ]. [. N / n ]. [. K / y ]. ph <-> [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph )
11 8 10 bitri
 |-  ( [. N / n ]. [. <. V , W >. / x ]. [. K / y ]. ph <-> [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph )
12 11 anbi2i
 |-  ( ( N e. V /\ [. N / n ]. [. <. V , W >. / x ]. [. K / y ]. ph ) <-> ( N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) )
13 7 12 bitri
 |-  ( N e. { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } <-> ( N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) )
14 5 13 bitrdi
 |-  ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> ( N e. ( <. V , W >. F K ) <-> ( N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) ) )
15 14 pm5.32da
 |-  ( ( V e. X /\ W e. Y ) -> ( ( K e. V /\ N e. ( <. V , W >. F K ) ) <-> ( K e. V /\ ( N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) ) ) )
16 3anass
 |-  ( ( K e. V /\ N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) <-> ( K e. V /\ ( N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) ) )
17 15 16 bitr4di
 |-  ( ( V e. X /\ W e. Y ) -> ( ( K e. V /\ N e. ( <. V , W >. F K ) ) <-> ( K e. V /\ N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) ) )
18 3 17 bitrd
 |-  ( ( V e. X /\ W e. Y ) -> ( N e. ( <. V , W >. F K ) <-> ( K e. V /\ N e. V /\ [. <. V , W >. / x ]. [. K / y ]. [. N / n ]. ph ) ) )