Step |
Hyp |
Ref |
Expression |
1 |
|
mpoxopoveq.f |
|- F = ( x e. _V , y e. ( 1st ` x ) |-> { n e. ( 1st ` x ) | ph } ) |
2 |
1
|
a1i |
|- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> F = ( x e. _V , y e. ( 1st ` x ) |-> { n e. ( 1st ` x ) | ph } ) ) |
3 |
|
fveq2 |
|- ( x = <. V , W >. -> ( 1st ` x ) = ( 1st ` <. V , W >. ) ) |
4 |
|
op1stg |
|- ( ( V e. X /\ W e. Y ) -> ( 1st ` <. V , W >. ) = V ) |
5 |
4
|
adantr |
|- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> ( 1st ` <. V , W >. ) = V ) |
6 |
3 5
|
sylan9eqr |
|- ( ( ( ( V e. X /\ W e. Y ) /\ K e. V ) /\ x = <. V , W >. ) -> ( 1st ` x ) = V ) |
7 |
6
|
adantrr |
|- ( ( ( ( V e. X /\ W e. Y ) /\ K e. V ) /\ ( x = <. V , W >. /\ y = K ) ) -> ( 1st ` x ) = V ) |
8 |
|
sbceq1a |
|- ( y = K -> ( ph <-> [. K / y ]. ph ) ) |
9 |
8
|
adantl |
|- ( ( x = <. V , W >. /\ y = K ) -> ( ph <-> [. K / y ]. ph ) ) |
10 |
9
|
adantl |
|- ( ( ( ( V e. X /\ W e. Y ) /\ K e. V ) /\ ( x = <. V , W >. /\ y = K ) ) -> ( ph <-> [. K / y ]. ph ) ) |
11 |
|
sbceq1a |
|- ( x = <. V , W >. -> ( [. K / y ]. ph <-> [. <. V , W >. / x ]. [. K / y ]. ph ) ) |
12 |
11
|
adantr |
|- ( ( x = <. V , W >. /\ y = K ) -> ( [. K / y ]. ph <-> [. <. V , W >. / x ]. [. K / y ]. ph ) ) |
13 |
12
|
adantl |
|- ( ( ( ( V e. X /\ W e. Y ) /\ K e. V ) /\ ( x = <. V , W >. /\ y = K ) ) -> ( [. K / y ]. ph <-> [. <. V , W >. / x ]. [. K / y ]. ph ) ) |
14 |
10 13
|
bitrd |
|- ( ( ( ( V e. X /\ W e. Y ) /\ K e. V ) /\ ( x = <. V , W >. /\ y = K ) ) -> ( ph <-> [. <. V , W >. / x ]. [. K / y ]. ph ) ) |
15 |
7 14
|
rabeqbidv |
|- ( ( ( ( V e. X /\ W e. Y ) /\ K e. V ) /\ ( x = <. V , W >. /\ y = K ) ) -> { n e. ( 1st ` x ) | ph } = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) |
16 |
|
opex |
|- <. V , W >. e. _V |
17 |
16
|
a1i |
|- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> <. V , W >. e. _V ) |
18 |
|
simpr |
|- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> K e. V ) |
19 |
|
rabexg |
|- ( V e. X -> { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } e. _V ) |
20 |
19
|
ad2antrr |
|- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } e. _V ) |
21 |
|
equid |
|- z = z |
22 |
|
nfvd |
|- ( z = z -> F/ x ( ( V e. X /\ W e. Y ) /\ K e. V ) ) |
23 |
21 22
|
ax-mp |
|- F/ x ( ( V e. X /\ W e. Y ) /\ K e. V ) |
24 |
|
nfvd |
|- ( z = z -> F/ y ( ( V e. X /\ W e. Y ) /\ K e. V ) ) |
25 |
21 24
|
ax-mp |
|- F/ y ( ( V e. X /\ W e. Y ) /\ K e. V ) |
26 |
|
nfcv |
|- F/_ y <. V , W >. |
27 |
|
nfcv |
|- F/_ x K |
28 |
|
nfsbc1v |
|- F/ x [. <. V , W >. / x ]. [. K / y ]. ph |
29 |
|
nfcv |
|- F/_ x V |
30 |
28 29
|
nfrabw |
|- F/_ x { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } |
31 |
|
nfsbc1v |
|- F/ y [. K / y ]. ph |
32 |
26 31
|
nfsbcw |
|- F/ y [. <. V , W >. / x ]. [. K / y ]. ph |
33 |
|
nfcv |
|- F/_ y V |
34 |
32 33
|
nfrabw |
|- F/_ y { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } |
35 |
2 15 6 17 18 20 23 25 26 27 30 34
|
ovmpodxf |
|- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) |