Step |
Hyp |
Ref |
Expression |
1 |
|
mpoxopoveq.f |
|- F = ( x e. _V , y e. ( 1st ` x ) |-> { n e. ( 1st ` x ) | ph } ) |
2 |
|
mpoxopoveqd.1 |
|- ( ps -> ( V e. X /\ W e. Y ) ) |
3 |
|
mpoxopoveqd.2 |
|- ( ( ps /\ -. K e. V ) -> { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } = (/) ) |
4 |
1
|
mpoxopoveq |
|- ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) |
5 |
4
|
ex |
|- ( ( V e. X /\ W e. Y ) -> ( K e. V -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) ) |
6 |
5 2
|
syl11 |
|- ( K e. V -> ( ps -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) ) |
7 |
|
df-nel |
|- ( K e/ V <-> -. K e. V ) |
8 |
1
|
mpoxopynvov0 |
|- ( K e/ V -> ( <. V , W >. F K ) = (/) ) |
9 |
7 8
|
sylbir |
|- ( -. K e. V -> ( <. V , W >. F K ) = (/) ) |
10 |
9
|
adantr |
|- ( ( -. K e. V /\ ps ) -> ( <. V , W >. F K ) = (/) ) |
11 |
3
|
eqcomd |
|- ( ( ps /\ -. K e. V ) -> (/) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) |
12 |
11
|
ancoms |
|- ( ( -. K e. V /\ ps ) -> (/) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) |
13 |
10 12
|
eqtrd |
|- ( ( -. K e. V /\ ps ) -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) |
14 |
13
|
ex |
|- ( -. K e. V -> ( ps -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) ) |
15 |
6 14
|
pm2.61i |
|- ( ps -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) |