Metamath Proof Explorer


Theorem mpoxopoveqd

Description: Value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, deduction version. (Contributed by Alexander van der Vekens, 11-Oct-2017)

Ref Expression
Hypotheses mpoxopoveq.f
|- F = ( x e. _V , y e. ( 1st ` x ) |-> { n e. ( 1st ` x ) | ph } )
mpoxopoveqd.1
|- ( ps -> ( V e. X /\ W e. Y ) )
mpoxopoveqd.2
|- ( ( ps /\ -. K e. V ) -> { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } = (/) )
Assertion mpoxopoveqd
|- ( ps -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } )

Proof

Step Hyp Ref Expression
1 mpoxopoveq.f
 |-  F = ( x e. _V , y e. ( 1st ` x ) |-> { n e. ( 1st ` x ) | ph } )
2 mpoxopoveqd.1
 |-  ( ps -> ( V e. X /\ W e. Y ) )
3 mpoxopoveqd.2
 |-  ( ( ps /\ -. K e. V ) -> { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } = (/) )
4 1 mpoxopoveq
 |-  ( ( ( V e. X /\ W e. Y ) /\ K e. V ) -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } )
5 4 ex
 |-  ( ( V e. X /\ W e. Y ) -> ( K e. V -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) )
6 5 2 syl11
 |-  ( K e. V -> ( ps -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) )
7 df-nel
 |-  ( K e/ V <-> -. K e. V )
8 1 mpoxopynvov0
 |-  ( K e/ V -> ( <. V , W >. F K ) = (/) )
9 7 8 sylbir
 |-  ( -. K e. V -> ( <. V , W >. F K ) = (/) )
10 9 adantr
 |-  ( ( -. K e. V /\ ps ) -> ( <. V , W >. F K ) = (/) )
11 3 eqcomd
 |-  ( ( ps /\ -. K e. V ) -> (/) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } )
12 11 ancoms
 |-  ( ( -. K e. V /\ ps ) -> (/) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } )
13 10 12 eqtrd
 |-  ( ( -. K e. V /\ ps ) -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } )
14 13 ex
 |-  ( -. K e. V -> ( ps -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } ) )
15 6 14 pm2.61i
 |-  ( ps -> ( <. V , W >. F K ) = { n e. V | [. <. V , W >. / x ]. [. K / y ]. ph } )