Step |
Hyp |
Ref |
Expression |
1 |
|
mpoxopn0yelv.f |
|- F = ( x e. _V , y e. ( 1st ` x ) |-> C ) |
2 |
|
neq0 |
|- ( -. ( V F K ) = (/) <-> E. x x e. ( V F K ) ) |
3 |
1
|
dmmpossx |
|- dom F C_ U_ x e. _V ( { x } X. ( 1st ` x ) ) |
4 |
|
elfvdm |
|- ( x e. ( F ` <. V , K >. ) -> <. V , K >. e. dom F ) |
5 |
|
df-ov |
|- ( V F K ) = ( F ` <. V , K >. ) |
6 |
4 5
|
eleq2s |
|- ( x e. ( V F K ) -> <. V , K >. e. dom F ) |
7 |
3 6
|
sselid |
|- ( x e. ( V F K ) -> <. V , K >. e. U_ x e. _V ( { x } X. ( 1st ` x ) ) ) |
8 |
|
fveq2 |
|- ( x = V -> ( 1st ` x ) = ( 1st ` V ) ) |
9 |
8
|
opeliunxp2 |
|- ( <. V , K >. e. U_ x e. _V ( { x } X. ( 1st ` x ) ) <-> ( V e. _V /\ K e. ( 1st ` V ) ) ) |
10 |
|
eluni |
|- ( K e. U. dom { V } <-> E. n ( K e. n /\ n e. dom { V } ) ) |
11 |
|
ne0i |
|- ( n e. dom { V } -> dom { V } =/= (/) ) |
12 |
11
|
ad2antlr |
|- ( ( ( K e. n /\ n e. dom { V } ) /\ V e. _V ) -> dom { V } =/= (/) ) |
13 |
|
dmsnn0 |
|- ( V e. ( _V X. _V ) <-> dom { V } =/= (/) ) |
14 |
12 13
|
sylibr |
|- ( ( ( K e. n /\ n e. dom { V } ) /\ V e. _V ) -> V e. ( _V X. _V ) ) |
15 |
14
|
ex |
|- ( ( K e. n /\ n e. dom { V } ) -> ( V e. _V -> V e. ( _V X. _V ) ) ) |
16 |
15
|
exlimiv |
|- ( E. n ( K e. n /\ n e. dom { V } ) -> ( V e. _V -> V e. ( _V X. _V ) ) ) |
17 |
10 16
|
sylbi |
|- ( K e. U. dom { V } -> ( V e. _V -> V e. ( _V X. _V ) ) ) |
18 |
|
1stval |
|- ( 1st ` V ) = U. dom { V } |
19 |
17 18
|
eleq2s |
|- ( K e. ( 1st ` V ) -> ( V e. _V -> V e. ( _V X. _V ) ) ) |
20 |
19
|
impcom |
|- ( ( V e. _V /\ K e. ( 1st ` V ) ) -> V e. ( _V X. _V ) ) |
21 |
9 20
|
sylbi |
|- ( <. V , K >. e. U_ x e. _V ( { x } X. ( 1st ` x ) ) -> V e. ( _V X. _V ) ) |
22 |
7 21
|
syl |
|- ( x e. ( V F K ) -> V e. ( _V X. _V ) ) |
23 |
22
|
exlimiv |
|- ( E. x x e. ( V F K ) -> V e. ( _V X. _V ) ) |
24 |
2 23
|
sylbi |
|- ( -. ( V F K ) = (/) -> V e. ( _V X. _V ) ) |
25 |
24
|
con1i |
|- ( -. V e. ( _V X. _V ) -> ( V F K ) = (/) ) |