Step |
Hyp |
Ref |
Expression |
1 |
|
mpoxopn0yelv.f |
|- F = ( x e. _V , y e. ( 1st ` x ) |-> C ) |
2 |
|
neq0 |
|- ( -. ( <. V , W >. F K ) = (/) <-> E. n n e. ( <. V , W >. F K ) ) |
3 |
1
|
mpoxopn0yelv |
|- ( ( V e. X /\ W e. Y ) -> ( n e. ( <. V , W >. F K ) -> K e. V ) ) |
4 |
|
nnel |
|- ( -. K e/ V <-> K e. V ) |
5 |
3 4
|
syl6ibr |
|- ( ( V e. X /\ W e. Y ) -> ( n e. ( <. V , W >. F K ) -> -. K e/ V ) ) |
6 |
5
|
exlimdv |
|- ( ( V e. X /\ W e. Y ) -> ( E. n n e. ( <. V , W >. F K ) -> -. K e/ V ) ) |
7 |
2 6
|
syl5bi |
|- ( ( V e. X /\ W e. Y ) -> ( -. ( <. V , W >. F K ) = (/) -> -. K e/ V ) ) |
8 |
7
|
con4d |
|- ( ( V e. X /\ W e. Y ) -> ( K e/ V -> ( <. V , W >. F K ) = (/) ) ) |
9 |
8
|
imp |
|- ( ( ( V e. X /\ W e. Y ) /\ K e/ V ) -> ( <. V , W >. F K ) = (/) ) |